

The Hidden Cost of Your Isolated System Design

DAVID CARR *Applications Engineering Manager*

Presenter

David Carr

Applications Engineering Manager
Interface and Isolation Products

Agenda

- ► Introduction
- ► Market Trends Driving Isolated System Design Requirements
- ► Latest Isolation Trends
- ► Hidden Costs—How the New Trends Impact Project Risk and Time to Market
- Available Solutions and Shortcomings
- A New Solution for Isolated Power Delivery
- ► Conclusions

The Need for Isolation

- Electrical isolation is required in many applications
 - Safety—Governed by standards
 - Protect users from shock
 - Protect equipment from shock
 - Performance—No standards compliance
 - Eliminate ground loops
 - Provide fault tolerance
 - Segregate noise
- Circuitry must communicate and/or provide power across an isolation barrier
 - Maintain isolation
 - No current flow (or very little)
 - High performance
 - Voltage ratings, power, timing, reliability

- Hazardous voltages exist at many points within industrial and consumer locations
- People and equipment must be protected from long-term potential differences and temporary overvoltage conditions (faults)
- Local and global regulations mandate safety

Market Trends

- ► Smaller and lighter electrical systems
- ► Higher voltages—for example, 400 Vdc battery stacks
- ► Sensing and connectivity—more sensors and nodes
- ▶ Increased performance and product compatibility

Isolation Trends: EMC (Convergence of Radiated Emissions Specifications)

- Convergence of technology forcing changes in electromagnetic compatibility (EMC) standards
- Standards evolving to combine equipment types superset of requirements are more difficult to meet
- Example: CISPR32 combines requirements of CISPR22 (information technology) and CISPR11 (industrial, scientific, and medical equipment)
- Example: IEC 60601-1-2 Ed. 4 (medical ele ctronics) considers threats outside tradition al controlled healthcare environment
 - EMS, home, aircraft
 - EMC is considered a "normal" event similar to temperature, humidity, and pressure
 - Requirements become more challenging to meet

Isolation Trends: EMC (Convergence of Radiated Emissions Specifications)

Convergence of technology forcing changes in electromagnetic compatibility (EMC) standards. Standards evolving to combine equipment types—superset of requirements are more difficult to meet.

Hidden Cost # 1: Safety Certification

Multiple system-level and component-level s afety certifications add additional complexity, even with known or previously certified syste ms and circuits

- ▶ Differing geographic requirements
- Various agencies involved—sometimes with different interpretations of standards

- Standards bodies develop the master standard for a system or component
 - IEC—International Electrical Commission— Worldwide
 - UL—Underwriters Laboratories—North America
 - VDE—in Europe
 - For electrical safety, rules seem to be harmonizing with IEC
- Regional standards bodies
 - Interpret worldwide standards for application to the local region
 - Local line voltage requirements
 - Infrastructure specific modifications (power quality)
 - Environmental differences (altitude in China, humidity in Brazil)
 - Political leverage

Hidden Cost # 2: Increased Density

Forces trade-offs in performance and functionality, may impact schedule due to limited availability of solutions

- Increased density in factory automation
- Electronics must shrink
 - More integration
 - Smaller packaging
 - Smaller PCBs, higher density
- Similar trend in instrumentation
 - More functionality
 - Smaller packaging/housings

Hidden Cost # 3: Reducing Radiated Emissions

EMI mitigation techniques add to component count, extend the design, and may require multiple board spins to meet targets

- Classic EMC mitigation techniques
 - Ferrites
 - Capacitors (decoupling and cross-barrier)
 - Beads
 - Metal shields/enclosures
- Smaller and more dense PCBs
 - Less space for mitigation
- Mitigation is often implemented by trial and error
 - Tests are lengthy and expensive

Hidden Cost # 4: Isolation Complexity

May require specialized expertise and add to project cost and time

- Transferring power and data across the isolation barrier
- Using multiple power sources

The Need for a New Solution: Managing Project Cost and Risk

Typical Isolation Design Trade-offs

- Keeping your application small vs.
- Meeting EMC targets vs.
- Meeting deadlines with fewer board spins ...

Need a solution that will help speed time to market, reduce evaluation time, mitigate risk, and decrease project cost

- More integrated components
- Pretested and precertified functions
- EMC mitigation techniques enacted earlier in the project
- Simplified design

Traditional Isolated Power Solution: Discrete Implementation

- Isolated Flyback converters are a common approach for isolated power needs
- They have some benefits, including a low bill of material cost, but there are drawbacks
- The error amplifier requires engineering effort to develop a compensation network to stabilize the voltage loop
 - Dependent on optocoupler performance variability
 - Variation in current transfer ratio limits performance and the operating temperature range
- This approach seems better from a cost point of view, but there's a trade-off in engineering effort and technical risk
- This also introduces risk in EMC performance and the ability to achieve safety certifications

A New Solution

Low Emissions *iso* Power® Integrated, Isolated DC-to-DC Converters

The ADuM5020/ADuM5028 and ADuM6020/ADuM6028 build upon ADI's pioneering expertise in digital isolated power solutions

- Simplified EMC certification
 - Below EN 55022/CISPR 22 Class B emissions limits at full load on a 2 layer PCB
- Smallest package size
 - 8-lead SOIC_IC package with 8.3 mm minimum creepage and 300 mW isolated output power
- 500 mW integrated isolated output power
 - ADuM5020 16-lead SOIC_W package with 7.8 mm creepage
 - ADuM6020 16-lead SOIC_IC package with 8.3 mm creepage
- Safety Certifications

The Advantage: Simple and Small 2-Layer PCB

More than 70% PCB area savings

Measuring Radiated Emissions with iso Power®

ADuM5020

16-lead SOIC_W 100 mA max load

CISPR 22/EN 55022 Class B tests

10 m chamber at CEI, Ireland

ADuM5028

8-lead SOIC_IC 60 mA max load

Simplified 2 Layer PC Board Layout

ADuM5020 and **ADuM5028** evaluation boards with 2 layer PCB, meet CISPR 22 Class B using ferrites on V_{ISO} and GND_{ISO}, but without stitching capacitance

Example of ADuM5020 1 6-lead SOIC Zoomed In on Pin 11 GND_{ISO} and Pin $12 V_{ISO}$

Ferrites E2, E3 and Bypa ss Capacitors C4, C6

Ferrites E2, E3 Murata BLM15HD182SN1 Impedance of 1800 Ω at

ADuM5028: Meeting CISPR 22 Class B

ADuM5028 with 50 mA Load

30 MHz to 1000 MHz Results

Frequency (MHz)	Angle (°)	Height (m)	Quasi-Peak Measurement (dBµV/m)	Class B Limit (dBµV/m)	Quasi-Peak Margin from Class B Spec (dB)
308.9	180	3.5	25.3	37	-11.7
396.956	0	2	27.7	37	-9.3
428.668	0	2	27	37	–10
920.04	0	1	30.7	37	-6.3

Using 2 Layer PCB: Quasi-peak meets CISPR 22 Class B by -6.3 dBµV margin @ 920 MHz

ADuM5020: Meeting CISPR 22 Class B

ADuM5020 with 50 mA Load

30 MHz to 1000 MHz Results

Frequency (MHz)	Angle (°)	Height (m)	Quasi-Peak Measurement (dBµV/m)	Class B Limit (dBµV/m)	Quasi-Peak Margin from Class B Spec (dB)
310.2	180	3	24.1	37	–12.9
426.256	0	3	26.7	37	-10.3
359.004	180	1	23.7	37	-13.3
935.76	0	1	30.1	37	-6.9

Using 2 Layer PCB: Quasi-peak meets CISPR 22 Class B by -6.9 dBµV margin @ 935 MHz

ADuM5020: Meeting CISPR 22 Class B with 100 mA Load

ADuM5020 with 100 mA Load

30 MHz to 1000 MHz Results

Frequency (MHz)	Angle (°)	Height (m)	Quasi-Peak Measurement (dBµV/m)	Class B Limit (dBµV/m)	Quasi-Peak Margin from Class B Spec (dB)
305.656	180	3	28.3	37	-8.7
336.892	180	2.5	27.3	37	-9.7
396.532	180	2	28.5	37	-8.5
426.456	180	2	25.3	37	-11.7
915.264	0	1	31.9	37	- 5.1

Using 2 Layer PCB at 100mA : Quasi-peak meets CISPR 22 Class B by -5.1 dBµV margin @ 915 MHz

Compact, High Density, High Voltage Emerging Applications

Regulatory Compliance Meet CISPR 22 Class B standards

Battery Monitoring and Inverters

Programmable Logic Controller (PLC)

Precision Measurement

Compact, High Density, High Voltage Emerging Applications

Reduced Complexity No stitching capacitance needed

Battery Monitoring and Inverters

Programmable Logic Controller (PLC)

Precision Measurement

Compact, High Density, High Voltage Emerging Applications

► Lower Material Cost
Up to 30% on a
2-layer PCB

Battery Monitoring and Inverters

Programmable Logic Controller (PLC)

Precision Measurement

Compact, High Density, High Voltage Emerging Applications

► Smaller Application Size
Up to 70% PCB space sa
vings

Battery Monitoring and Inverters

Programmable Logic Controller (PLC)

Precision Measurement

Compact, High Density, High Voltage Emerging Applications

Faster Time to Market Reduced PCB design and test time

Battery Monitoring and Inverters

Programmable Logic Controller (PLC)

Precision Measurement

Conclusions

- Market trends such as vehicle electrification and Industry 4.0 are creating increased electrical content in many applications
 - This is driving an upsurge in the need for high performance, high density isolated circuitry
- ► Technical trends are making isolated system design more difficult and risky
- ► EMC specifications are becoming more difficult, while equipment types are converging
- Global system-level and component-level safety certification requirements add another layer of complexity and risk
- Fully integrated and safety-certified isolated dc-to-dc converters with documented EMC performance offer systems designers a better solution
- They can dramatically reduce design complexity and ensure better EMC testing and compliance
- ► With less time devoted to redesign, recharacterization, and retesting, designers can reduce board space, lessen risk, lower costs, and improve time to market

Thank You For Watching!

- Technical support, Sample, Quotation -

Web: www.sheenbang.com/new_kor/sub03/body01.php

E-mail: cs@sheenbang.com

Tel: 02-522-1175

ADI 한국 대리점 ㈜신방

