
Quest 5 Material

STMicroelectronics Korea

2021

Prerequisite and setup

• CubeIDE 1.6.1

• CubeMX 6.3.0

• TouchGFX 4.18

• CubeProgrammer 2.8.0

• In graphic applications, it is common to use external memories to store images, texts, etc.

therefore, you cannot download the binary without a dedicated bootloader. In other words,

downloading with IAR will not work since IAR will only flash the internal memory. So, you need to

use CubeProgrammer. To know how, see next slide.

Software you need to install

3

Download binary using CubeProgrammer (1/3)

4

1

2

3

4

1. Click on the EL icon to display the list of External Loaders

2. In the search bar, type “h7b”

3. Select the external loader

4. Click on the icon to go back to the download page

Download binary using CubeProgrammer (2/3)

5

1

2

1. Click on the browse button and select your .hex file

2. Click on Start Programming. Make sure you have “Run after

programming” enabled. “Verify programming” is not necessary.

Download binary using CubeProgrammer (3/3)

6

• Here is what you should see

on your board.

Folder architecture of a TouchGFX
project

Explore generated code

Application common config

(main.c, HAL and FreeRTOS conf)

ST MCU Drivers (BSP, HAL)

gcc toolchain files

FreeRTOS, TouchGFX framework

STM32CubeIDE configuration files

TouchGFX Designer common files

8

In directory : <your project folder>\

Explore generated TouchGFX directory

GUI binary inputs (images, texts, fonts)

Working directory for simulator and target

compilation

All the cpp files generated from the assets

directory + GUI files that should not be

modified (in gui_generated)

GUI files that can be modified to implement

interactions and customize

Simulator compilation scripts

Display HW initialisation (LTDC, DMA2D, …)

9

Start STM32CubeIDE

Go to <your project folder>\STM32CubeIDE\

Double click on .project, which will bring up STM32CubeIDE

10

1

2

1

2

TouchGFX Framework Startup
Workflow

TouchGFX Framework Startup Workflow

12

main.c app_touchgfx.c
TouchGFXConfig

uration.cpp
TouchGFXHAL.cpp

TouchGFXGeneratedHAL.cpp

TouchGFX

Framework

HAL

MX_TouchGFX_Init() touchgfx_init() hal.initialize()

Calling base class initialize()

Calling base class initialize()

Finish initialization

main.c

start GUI Task

C++ domain

C domain

This file is a

wrapper to go

from C domain to

C++ domain

TouchGFX Framework Startup Workflow

13

/* In main.c */

void StartGuiTask(void *argument)

{

/* USER CODE BEGIN 5 */

MX_TouchGFX_Process();

/* Infinite loop */

for(;;)

{

osDelay(1);

}

/* USER CODE END 5 */

}

/**

* TouchGFX application entry function (in app_touchgfx.c)

*/

void MX_TouchGFX_Process(void)

{

// Calling forward to touchgfx_init in C++ domain

touchgfx_taskEntry();

}

/* In TouchGFXConfiguration.cpp */

void touchgfx_taskEntry()

{

/*

* Main event loop. Will wait for VSYNC signal, and then process next frame. Call

* this function from your GUI task.

*

* Note This function never returns

*/

hal.taskEntry();

}

MVP system

Model-View-Presenter

Main

Application
View

Presenter

Model

15

Model::tick() is called on each frame rendering
(TGFX framework)

main.c

model.cpp/hpp

MainPresenter.cpp/hpp

MainView.cpp/hpp

External event

propagation

C to C++ domain

C++ to C domain

UI event

propagation

External event

propagation

GUI Current Active Screen

TouchGFX Application (1/2)

• Composed of one or several SCREENS

• Group of widgets (VIEW)

• Their logic regarding user/system/widgets events (PRESENTER)

• Only one SCREEN is active at a time (for lower memory usage)

• In the MVP architecture:

• Events flow from Model and View to the presenter

• Presenter processes events and update accordingly Model and View

• Model is the only interface with the hardware and backend application

View1Model

Backend
• OS tasks

• Hardware

View2Presenter2

Presenter1

16

16

TouchGFX Application (2/2)

• Model

• Only one in an application

• Stores state of non-active screens

• Interface with the hardware, relaying events to and from it

• Has a pointer to the active presenter

• View

• Holds and configure the widgets of one screen

• Has a pointer to it associated presenter to communicate events

• Presenter

• Receives events from both associated View and Model

• Decides which action to take
17

UI to Backend – UART example (no OS)

UART example – Overview - UI to Backend

19

main.c Model.cpp

ScreenView.cpp

ScreenPresenter.cpp

C++ domain

C domain

UART

Event triggered by UI

e.g buttonClicked

SendMessage()

SendMessage()SendMessage()

Backend to UI (no OS)

UART example – Overview – Backend to UI

22

main.c Model.cpp

ScreenView.cpp ScreenPresenter.cpp

C++ domain

C domain

UART

Update UI e.g. change TextArea

according to what was received

isNewValueReceived()

The system

receives data

from UART ISR

ModelListener.hpp

requestUIupdate()

requestUIupdate()

requestUIupdate()

In Model::tick(), you

check if a new value
from the UART came

newValue

• The Model has a pointer to the currently active Presenter. The type of this pointer

is an interface (ModelListener) which you can modify to reflect the application-

specific events that are appropriate.

What’s the ModelListener ?

25

Model.cpp

Screen1Presenter.cpp

ModelListener.hpp

Screen2Presenter.cpp

Screen3Presenter.cpp

Screen1 is active

Backend to UI (with OS)

• Prerequisite : None. No need to learn extensively how FreeRTOS works.

• When using FreeRTOS, or any Embedded OS, you most likely use different tasks.

• To send information from one task to the other, you need something called a

queue.

• Queues have 2 main benefits :

• Provide a way to communicate between tasks.

• A non-blocking communication system.

When using FreeRTOS - Queues

27

Backend to UI with queues – Overview

28

main.c Model.cpp

ScreenView.cpp ScreenPresenter.cpp

C++ domain

C domain

UART

Update UI e.g. change TextArea

according to what was received

The system

receives data

from UART ISR

ModelListener.hpp

requestUIupdate()

requestUIupdate()

requestUIupdate()

In Model::tick(), you

check if new data
arrived in the queue

Automatically

sends the data

to the model

via a queue.

Queues for multi-tasks communication

29

Task UART Task GUI

C++ domain

C domain

UART

Checks that

some new data

was received

ModelListener.hpp

requestUIupdate()

In Model::tick(), you

check if new data
arrived in the queue

Automatically

sends the data

to the model

via a queue.

• For using queues with FreeRTOS you only need to know the following elements.

• A queue is declared like this :

• xQueueHandle myQueue;

• A queue is created as follows :

• myQueue = xQueueCreate(nbElements, sizeof(element));

• To add an element in a queue :

• xQueueSendFromISR(myQueue, &element, 0); // When call inside an interrupt handler

• xQueueSendToBack(myQueue, &element, 0); //When called from a task

• To check if an element is in the queue :

• if (uxQueueMessagesWaiting(myQueue) > 0) { /* Retrieve new data */ }

• To take the element from the queue :

• xQueueReceive(myQueue, &newValue, 0); // newValue is the new value received from the queue

FreeRTOS Queue API

30

Important side notes

• Everything done in the Designer, can also be done in User Code

• But the Designer can help you with a lot of things

• Avoid going back and forth between User Code and Generated Code

• Remember to utilize the MVP Pattern

• Inspect Generated code

• Reuse code from examples

• The TouchGFX API: Button

• Suggestion :

• Use the code editor Visual Studio Code.

• Use paint.NET for image editing

Important side notes

34Documentation Link: Model-View-Presenter Design Pattern

https://support.touchgfx.com/docs/api/classes/classtouchgfx_1_1_button
https://code.visualstudio.com/download
https://www.getpaint.net/download.html
https://support.touchgfx.com/docs/development/ui-development/software-architecture/model-view-presenter-design-pattern

Common questions answered

How to go from C to C++ domain and vice-versa ?

36

/**

* Declaration of a C function in a C++ file

*/

extern “C”

{

void myFunctionInCDomain();

}

/* The function previously declared

* can be called anywhere in the file

*/

void Model::func1()

{

myFunctionInCDomain();

}

/**

* Implement the function in your C file

*/

void myFunctionInCDomain()

{

// Code executed

}

How to add a screen change upon external event ?

37

• Steps :

• You create a change screen action (you will call it from user code later on)

• Then you create your interaction that performs a screen transition where the trigger is the call

of your previously created action

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries.

For additional information about ST trademarks, please refer to www.st.com/trademarks.

All other product or service names are the property of their respective owners.

Thank you

http://www.st.com/trademarks

