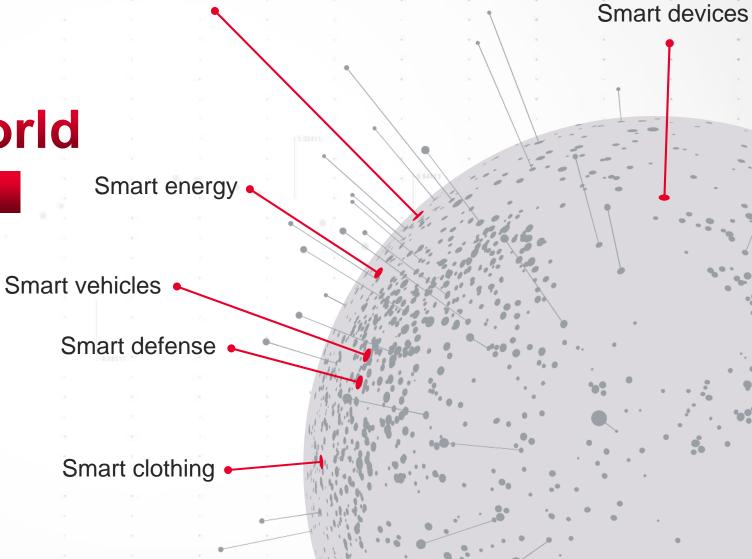
E6953A DSRC CoC Certification solution


April 2018 2018.4.5

/ Keysight Technologies

Technology Connects the World

INNOVATION IS EVERYWHERE

Smart cities

Our Expectations Are Growing: The Car Industry

LAST 220+ YEARS (1770 - 1997)



Progress was electromechanical in the first 220+ Years

Pace of Innovation is Accelerating

LAST 20+ YEARS

Innovation has completely revolutionized the industry

Innovations Through Multiple Technology Domains

Radar Collision Avoidance

Electronic Stability
Control Module

Climate Control System

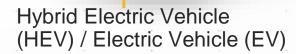
Infotainment/Navigation Modules (DVD, eCalls, Hands Free Telephony, GPS)

Anti brake Locking system

Tire Pressure Monitoring system

Emission Control Module

Power Steering Control
Rear-view camera
Backup sensors
Power Seat Control


Personnel Occupancy Detection Systems (PODS) for Air Bag systems

Remote Keyless Entry

Instrument Clusters

Fuel Injection Module Power Train & Engine Management (MiL, SiL, HiL)

Adaptive Lightning Control

Evolution of Sensors in Vehicles

Mechanical Designs Starting in 1976

- Basic electronics
- Mostly mechanical
- No connectivity

Assisted Driving Starting in 1997

- Electronic safety systems
- Integrated electronics
- Electric control units
- Infotainment

Autonomous Coming Next

- Sensor fusions
- Autonomous processing
- Auto-charging technologies
- Multi-connectivity

Technology Requirements Keep Advancing

MORE ELECTRONICS, MORE EFFICIENCY, MORE SENSORS

Electronics

- Better diagnostics
- Automotive Ethernet
- Infotainment

Batteries

- Longer range
- Higher densities
- More eco-friendly

Connectivity

- More information
- Better safety
- Easier navigation

Sensors

- Electro-mechanical
- Driver vision
- More autonomy

Emerging Standards

More Efficient Power

Innovators Have More Dynamic Variables

Higher Integration

TO WIN: REIMAGINE INNOVATION PROCESSES

Autonomy With Safety

By 2020, IoT markets will grow to

\$470 billion

Source: Bain

By 2020,

Connected car technology will grow to

\$1.6 billion

Source: Frost and Sullivan

\$1.2 trillion

Source: Ericsson

From 2017 to 2023,

The millimeter wave technology market will grow by

35.2% CAGR

Source: Markets and Markets

We Are at the Heart of the Revolution

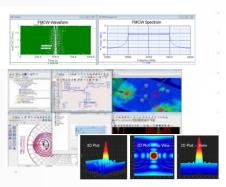
Accelerating Innovation to Connect and Secure the World

ENERGY

IOT

AUTOMOTIVE

AEROSPACE & DEFENSE

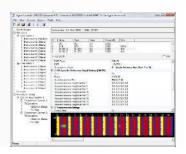


NETWORKING/ CLOUD

Keysight Connected Car Solutions

"Over Your Design and Test Lifecycle"

ADS / SystemVue Simulation SW

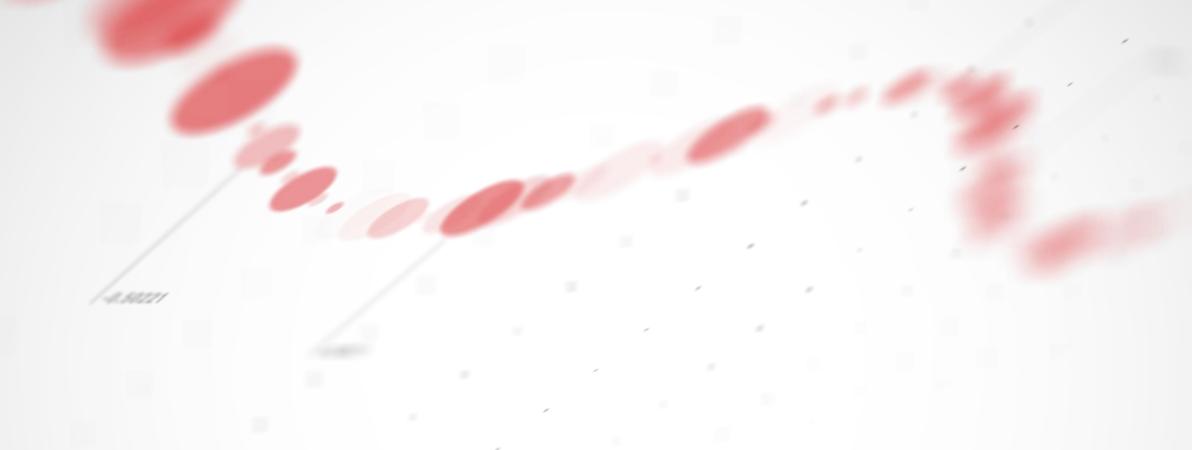

E7515A UXM Wireless Test Set T4010S Conformance Test System E6640A EXM Wireless Test Set

Architecture / Design

Development

Validation

Manufacturing


Signal Studio and **Signal Creation Software**

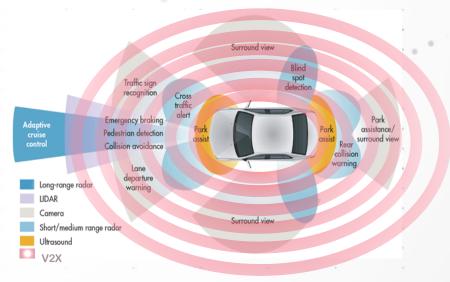
X-Series Signal Analyzers

X-Series Signal Generators

X-Series Oscilloscopes

Test Challenges and Requirement for V2X(DSRC)

V2X – Enhanced Safety, Enabling Higher Levels of Automation


V2V, V2I, V2P, V2N ...

Technology to enhance driving experience, prevent accidents and collisions, assist traffic flow, enable higher levels of automated driving.

2 wireless technologies are currently being proposed -

- ☐ DSRC (based on IEEE 802.11p)
- ☐ C-V2X (based on 3GPP Rel-14 LTE-A Pro)

Secure V2X considered necessary for L3/L4 ADAS

V2X Standards: Global Landscape

United States

- NHTSA NPRM mandating V2V
- All new cars with DSRC by 2024

First pilots and trials (C-V2X)

Europe, China

Basic Safety

DSRC (802.11p)

- Specs available since 2010 (discussions on ITS >13 years ago!)
- Proto devices being produced today
- Well tested, many trials, Eu/US/Ja support
- Concerns include infrastructure costs and lack of features to support new Use Cases

'Enhanced Safety'

LTE V2X (3GPP Rel 14)

- Specs available only since March 2017
- Main advantage:can reuse existing infrastructure to cover V2I/V2N
- V2V building on D2D (R12)
- Designed to be handle newer Use Cases
- Concerns over latency and lack of trials, congestion control

'Advanced Safety'

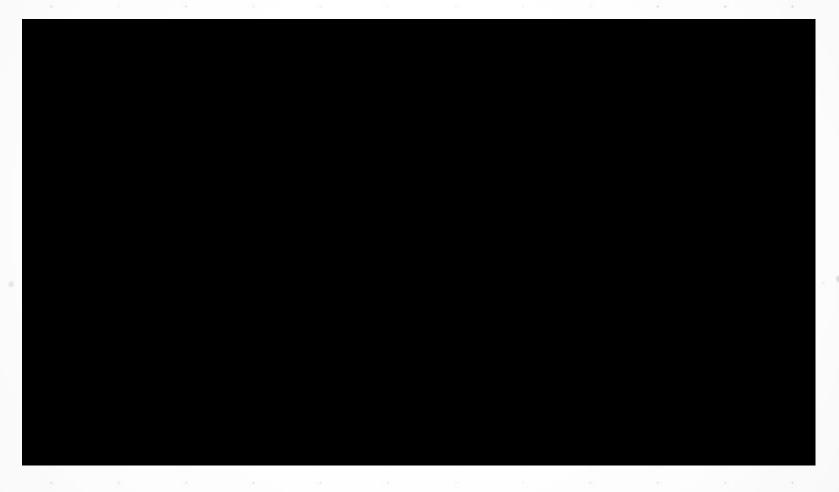
LTE V2X Rel-15+

- Next generation cellular technology
- Eventually will augment LTE V2X
- Backwards compatible
- Major priority is eMBB though (IoT and Automotive will be delayed)

Kevsight Confidential

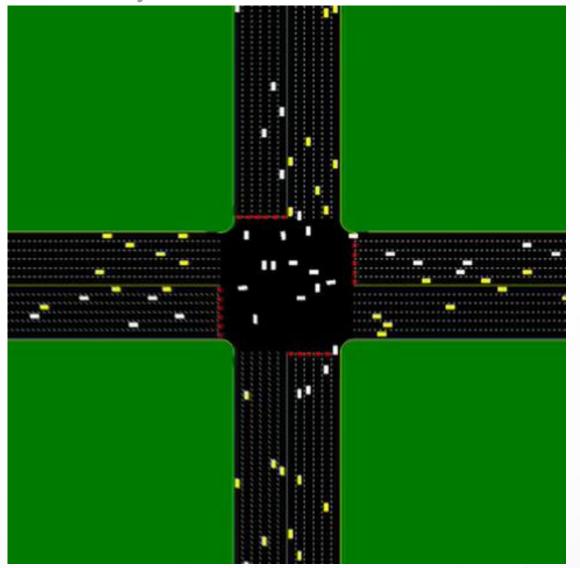
DSRC

MARKET TRENDS AND CHALLENGES


- Top 3 market trends/drivers
 - V2X close to mandatory deployment order in US
 - DSRC/WAVE/802.11p incumbent & ready standard
 - Cellular V2X being counter-proposed by Wireless heavyweights Qualcomm & Huawei, but standard not fully ready or a match to all Use Case requirements
- List top market challenges
 - Roll-out of DSRC RSU infrastructure for V2I use cases
 - Design/development of OBUs and RSUs conforming to 802.11p + relevant higher layer protocols in each region

Kevsight Confidential

Future Trends for Road Vehicle


Less Air pollution, Less delay

Future Trends for Road Vehicle

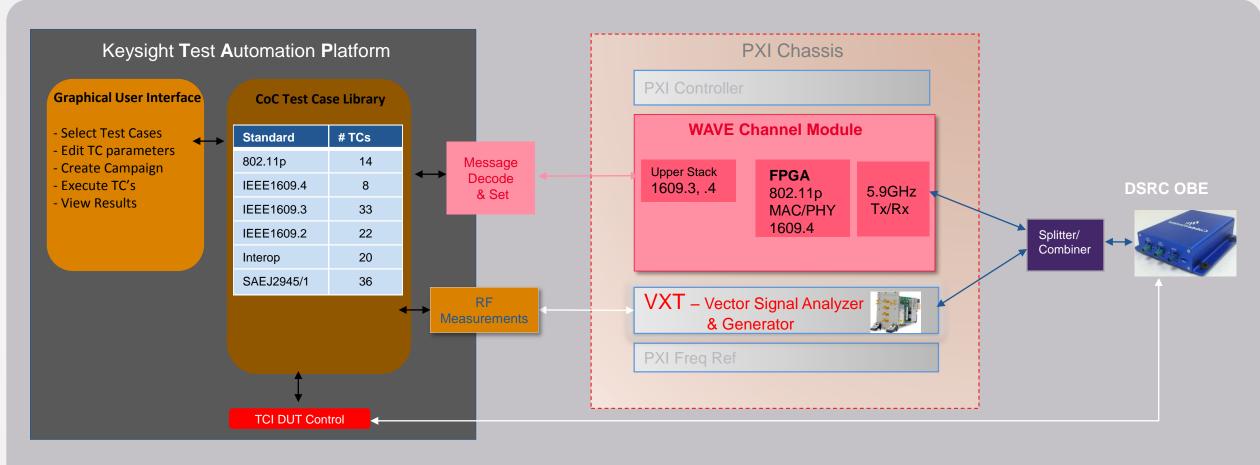
Less Air pollution, Less delay

Texas University Autonomous Intersection Management 2009

E6953A DSRC CoC Certification solution

E6953A DSRC CoC Certification Test Solution

802.11p, IEEE1609.3,4, 2 Tests Cases supported: J2945/1 Tests in progress


- Compact PXIe hardware
 - Keysight VXT: RF measurements + GPS source
 - WAVE Channel Module
 - CoC Test Cases require only 1 module
 - add modules for multiple simultaneous RF channels
 - Keysight PXIe Frame, Controller, Freq Ref

- Software
 - Certification Test Cases in Keysight Test Automation Platform
 - Test Case construction
 - Test Case sequencing
 - Pass/Fail
 - GUI
 - Controls Wave Channel Module & VXT
 - Single platform to be expanded for future V2X test needs
- Hardware & Software options for
 - full CoC
 - RF only
 - Protocol only

Keysight E6953A DSRC Certification Solution

Functional diagram

Application Software Hardware Device Under Tes

Firmware

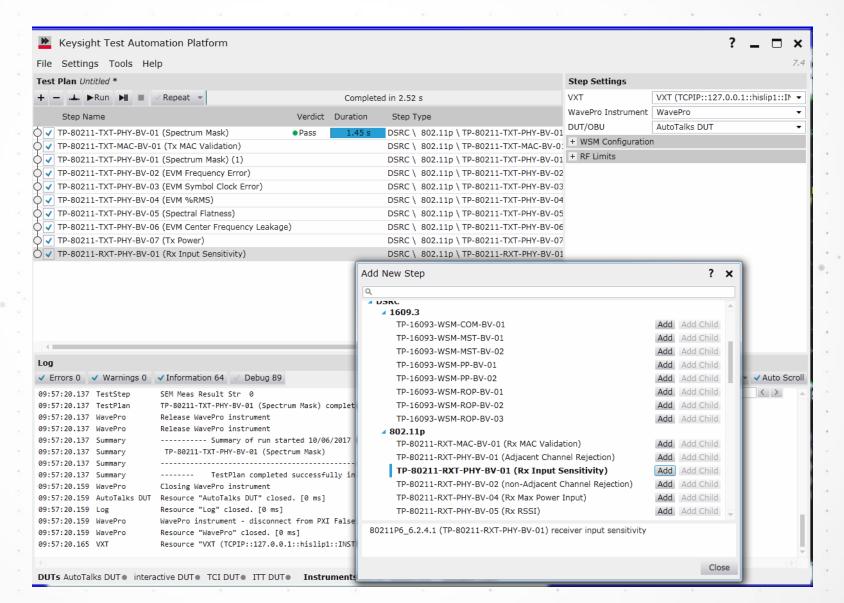
Keysight 'TAP' in C# - create your own 'Plugins'

DSRC

- Modular hardware
 - include/exclude RF test
 - Channel scalability
- Raw message data reporting
- Fully functioning real-time 'OBU' or 'RSU' (configurable)
- Quick turnaround for changes & fixes to software stack

Roadmap Plans

- ITS-G5 cover
 - optional 18GHz SA for EN 302 571 5.3.4
- C-V2X

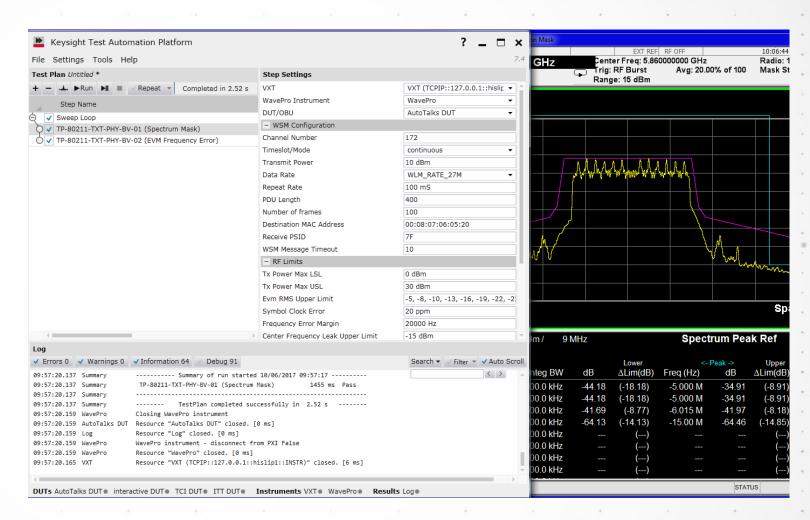

Test Automation Platform

Test Cases

- 802.11p
- IEEE1609.3
- IEEE1609.4
- IEEE1609.2
- J2945/1

Test Plans

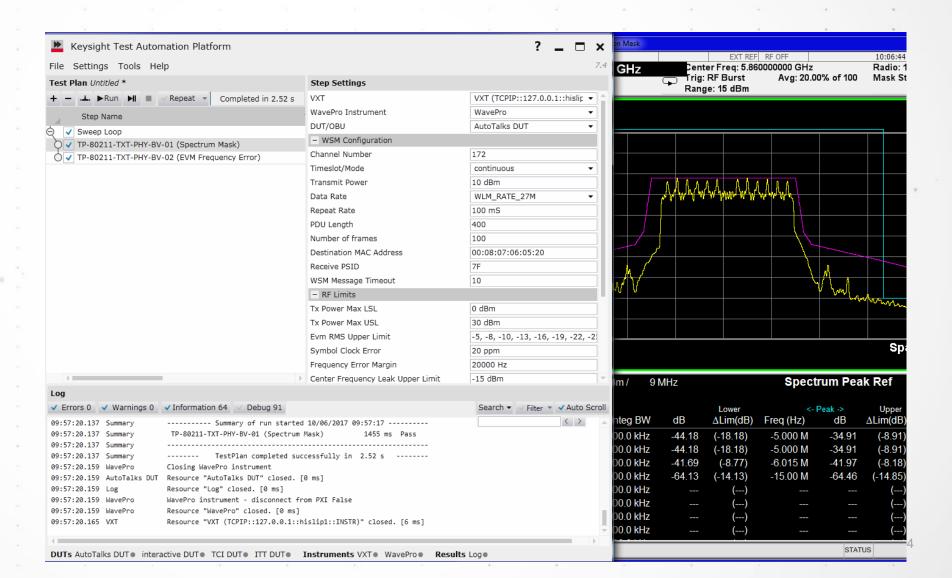
- Parameter Sweep Loop
 - · e.g. Channel, Data Rate



Test Automation Platform

802.11p Test Cases

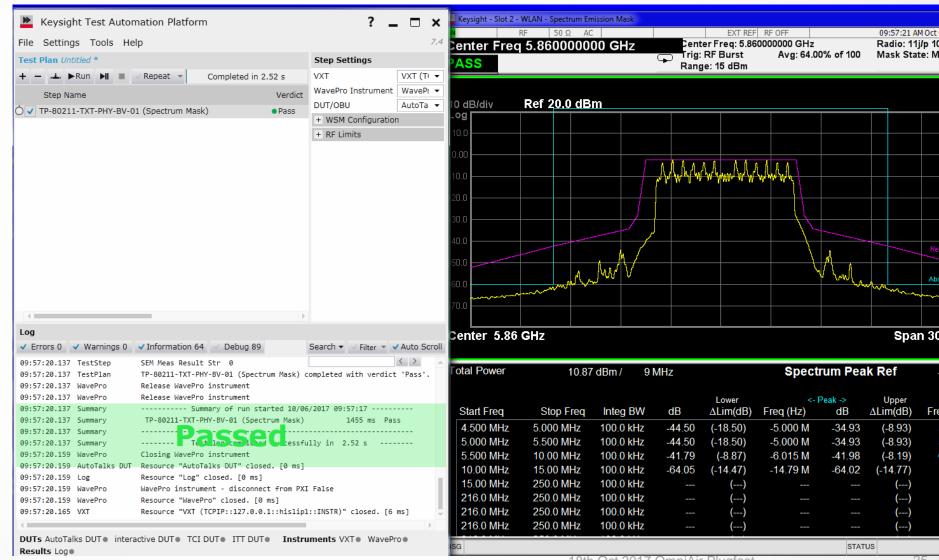
- RF measurements
- using VXT hardware
 - Vector Signal Analyzer & Source
- N9077A measurement application
 - Graphical Vector Signal Analyzer
- N7617B Signal Studio
 - · Arbitrary Waveform creation


PHY layer measurements common from Keysight R&D tools, through Design Verification, Certification to Manufacturing

Test Automation Platform

802.11p Test Cases - RF measurements

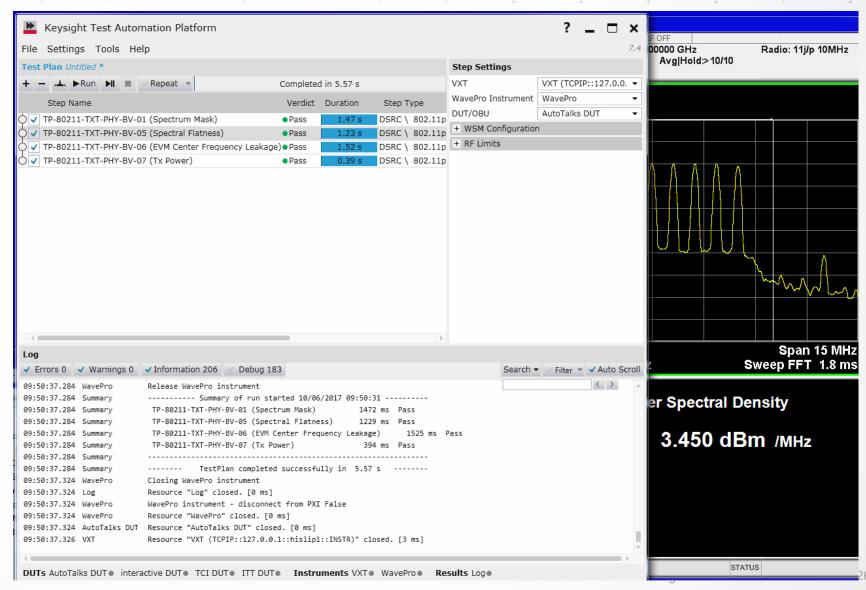
Parameter setting



Test Automation Platform

802.11p Test Cases

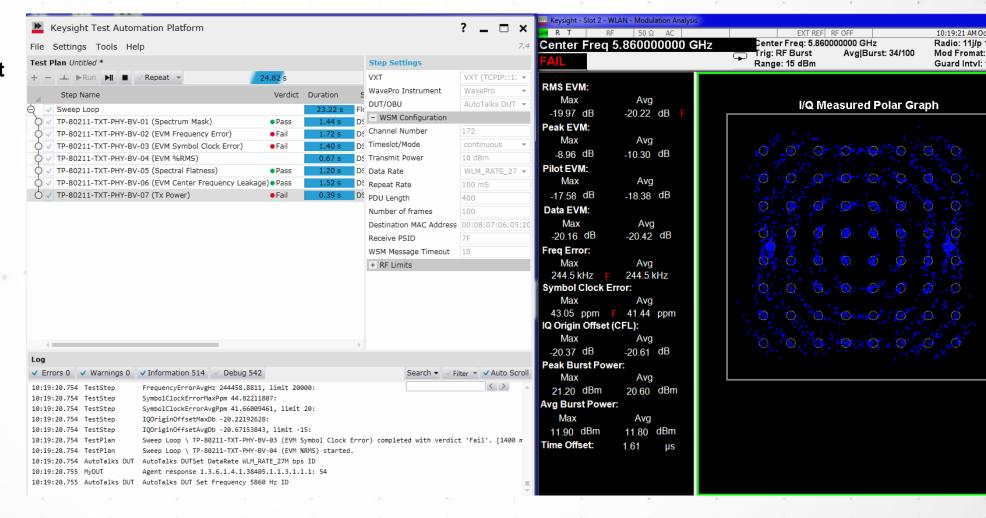
- Test Case Pass/Fail
- Graphical VSA window



Test Automation Platform

Sequence of Test Cases

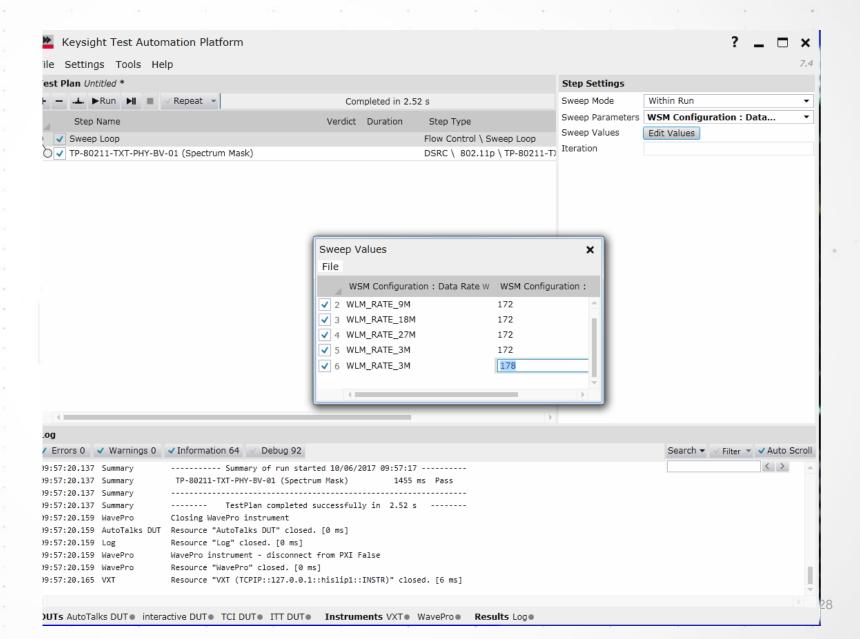
- Test Case Pass/Fail
- Graphical VSA window



Test Automation Platform

Looped Sequence of Test Cases

- Test Case Pass/Fail
- Graphical VSA window



Test Automation Platform

Sweep Loop

- On Test Case parameters
 - e.g. data rate, RF channel


E6953A Keysight DSRC CoC Certification Tester

Covers all CoC Test Cases in single, integrated PXI frame

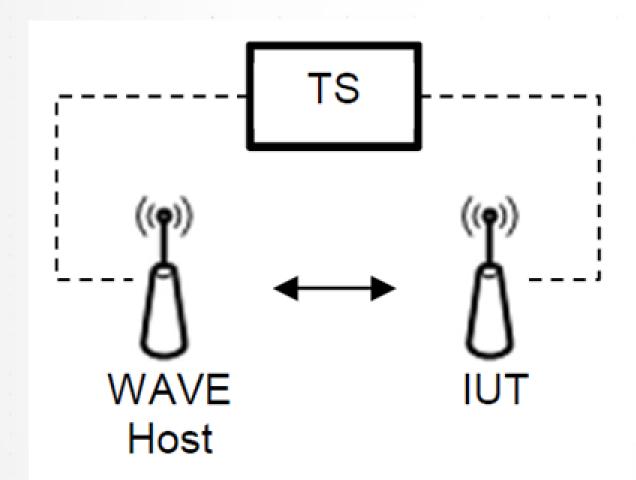
- 802.11p
- IEEE1609.3
- IEEE1609.4
- IEEE1609.2
- J2945/1

Up next

- Pre-Certification and Design Verification solution
 - Parameter flexibility to create new 'TC's & scenarios
- Loading, congestion, application testing
- ITS-G5
- C-V2X

Test Spec Overview – 1609.2

Security Service


- Conformance test specifications for Wireless Access in Vehicular Environments (WAVE)
 - Security Services Test Suite Structure and Test Purposes (TSS & TP)

Abbreviation

- TP: Test Purpose
- SPDU: Secure Protocol Data Unit
 - BSM: Basic Safety Messages
 - WSA: WAVE Service Advertisements Messages
- BI: Behavior Invalid
- BV: Behavior Valid

Test Configuration (1)

- TC: Test Configuration System
- TS: Test System
- IUT: Implementation Under Test
- ---: TS Control Interface

Initial States

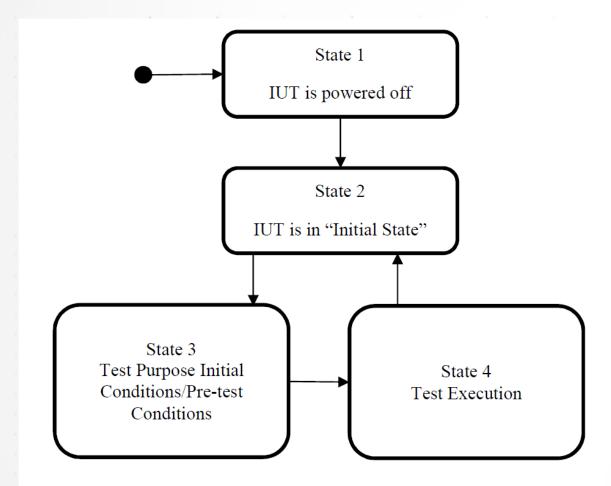


Figure 2: State Diagram

Each TP contains an initial condition.

- The IUT is powered up.
- The IUT is not transmitting or receiving messages
- The IUT is provisioned with the appropriate security credentials to enable transmission or reception of messages. That is, the IUT is configured with a valid signer credentials (certificate) as specified in SAE J2945/1 [1] and IEEE 1609.3 [5] security profiles for BSM and WSA.

TP Naming convention

ldentifier	TP- <root>-<gr>-<sgr>-<x>-<nn> or TP-<root>-<gr>-<x>-<nn> when no <sgr></sgr></nn></x></gr></root></nn></x></sgr></gr></root>	
	<root> = root</root>	16092
	<gr> = group</gr>	SPDU _{BSM}
		$SPDU_{\mathrm{WSA}}$
	<sgr> =sub- group</sgr>	SEND
		RECV
		CERTCH
	<x> = type of testing</x>	BV
		BI
	<nn> = sequential number</nn>	

1609.2				
Secure Basic Safety Message				
Secure Wave Service				
Advertisement message				
Send Message				
Receive Message				
Change Certificate				
Valid Behaviour tests				
Invalid Syntax or Behaviour Tests				
01 to 99				

Add New Step ? X Q DSRC **1609.2** Add Add Child TP-16092-SPDU-BSM-RECV-BI-01 Add Add Child TP-16092-SPDU-BSM-RECV-BI-02 TP-16092-SPDU-BSM-RECV-BV-01 Add Add Child Add Add Child TP-16092-SPDU-BSM-RECV-BV-02 TP-16092-SPDU-BSM-RECV-BV-03 Add Add Child TP-16092-SPDU-BSM-RECV-BV-04 Add Child Add Add Child TP-16092-SPDU-BSM-RECV-BV-05 Add Add Child TP-16092-SPDU-BSM-SEND-BV-01 Add Add Child TP-16092-SPDU-BSM-SEND-BV-02 Add Add Child TP-16092-SPDU-BSM-SEND-BV-03 TP-16092-SPDU-BSM-SEND-BV-04 Add Add Child Add Add Child TP-16092-SPDU-BSM-SEND-BV-05 Add Add Child TP-16092-SPDU-BSM-SEND-BV-06 Add Add Child TP-16092-SPDU-WSA-RECV-BI-01 Add Child Add TP-16092-SPDU-WSA-RECV-BV-01 Add Child TP-16092-SPDU-WSA-RECV-BV-02 TP-16092-SPDU-WSA-RECV-BV-03 Add Child Add Child TP-16092-SPDU-WSA-SEND-BV-01 Add TP-16092-SPDU-WSA-SEND-BV-02 Add Child Add Add Child TP-16092-SPDU-WSA-SEND-BV-03 Add Add Child TP-16092-SPDU-WSA-SEND-BV-04 1609.3 TP-16093-IP-CFG-BV-01 Add Add Child Close

Ex) TP-16092- SPDUBSM-SEND-BV-05

 Validate that a SPDU BSM containing a certificate digest is signed using a valid digital signature computed over entire payload using ecdsaP256Signature type.

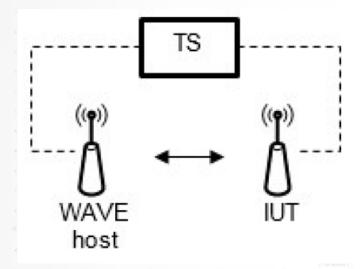
Pre-test conditions							
The IUT is being initialized							
Test Sequence							
Step	Туре	Description	Verdict				
1	Configure	The IUT is configured to transmit more than one SPDU _{BSM} per second					
2	Stimulus	The IUT transmits SPDU _{BSM}					
3	Verify	The IUT transmitted SPDU's _{BSM} contains <i>signer</i> containing <i>digest</i> indicating <i>HashedId8</i> where HashedId8 is referenced to pre-loaded certificate on the IUT and containing <i>verificationkeyIndicator</i> (KEY)	Pass/Fail				
4	Verify	SPDU _{BSM} Signature contains ecdsaP256Signature indicating r and s values verifiable using KEY.	Pass/Fail				

10:50:02.884	DEMO DUT	Resource "DEMO DUT" opened. [0 ms]
10:50:02.884	TestPlan	TP-16092-SPDU-BSM-SEND-BV-05 started.
10:50:02.884	TestStep	DSRCStep Base class RUN
10:50:03.142	TestStep	DUT transmitted SPDU'sBSM signer digest = HashedId8
10:50:03.142	TestStep	SPDUBSM Signature ecdsaP256Signature = r and s values
10:50:03.142	TestPlan	TP-16092-SPDU-BSM-SEND-BV-05 completed with verdict 'Pass'. [257 ms]
10:50:03.142	Summary	Summary of run started 03/20/2018 10:50:02
10:50:03.142	Summary	TP-16092-SPDU-BSM-SEND-BV-05 257 ms Pass
10:50:03.142	Summary	
10:50:03.142	Summary	TestPlan completed successfully in 0.26 s
10:50:03.204	Log	Resource "Log" closed. [0 ms]

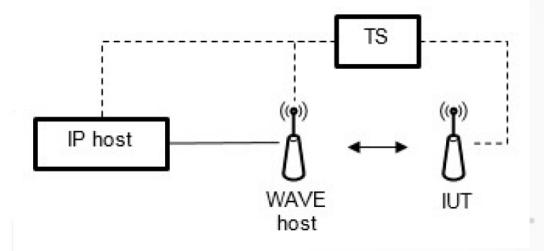
Test Spec Overview – 1609.3

Networking Service

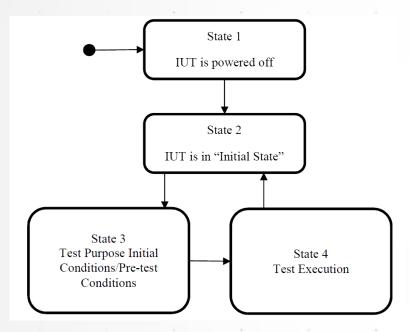
Conformance test specifications for Wireless Access in Vehicular Environments (WAVE)


— Networking Services Test Suite Structure and Test Purposes (TSS & TP)

Document Mnemonics:

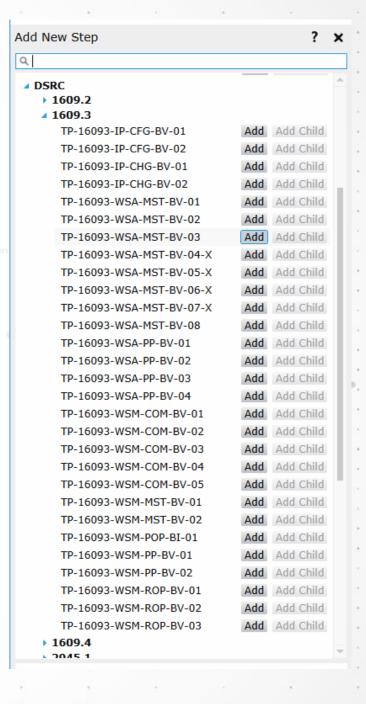

WSM: WAVE Short Messages

Test Configuration


- TC: Test Config (1) sending receiving WSM
- --- TS Control Interface

 TC: Test Config (2) – IPv6 Host Communications

Initial States



- Test Environment and Test System has reached room temperature (21 degrees Celsius +/- 5 degrees).
- No external DSRC units within range of IUT, DSRC Packet Capture Tool, and DSRC Reference Unit are transmitting outside of the test setup.
- The IUT is powered up
- Radio interface is initialized but does not transmit or receive messages over any DSRC channels
- Radio acquired and locked its position based on GNSS
- MAC address is assigned to the DSRC interface
- Unless otherwise stated, the IUT is not transmitting
- Unless otherwise stated, Congestion Control is disabled
- The IUT is provisioned with any required security credentials to enable transmission or reception of messages over DSRC
- The IUT is running Certification Interface Application

TP Naming conversion

· · · · · · · · · · · · · · · · · · ·		
<root> = root</root>	16093	18 19 19 19
<gr> = group</gr>	WSM	WAVE Short Messages
	WSA	WAVE Service Advertisements
	IP	Internet Protocol
<sgr> =sub- group</sgr>	CFG	Configuration
	CHG	Service Change
	COM	Communications
	MST	Message Structure
	POP	Protocol Operation
	PP	Packet Processing
	ROP	Radio Operation
<x> = type of testing</x>	BV	Valid Behavior tests
	BI	Invalid Syntax or Behavior Tests
<nn> = sequential number</nn>		01 to 99

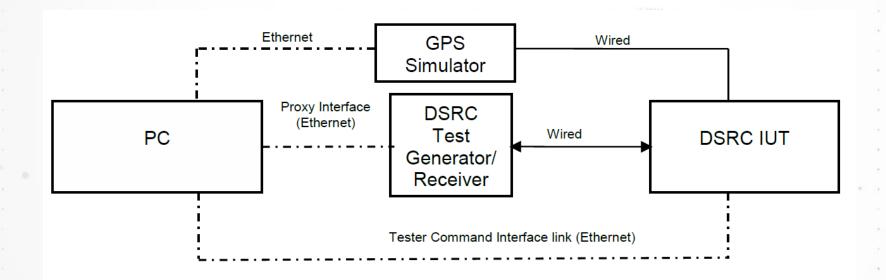
Ex) TP-16093-WSM-ROP-BV-01

 Verify that the IUT will transmit WSM containing valid WSM-N-Header including WAVE Info Element Extension 'Channel Number' and matching the actual channel used by the IUT.

Test Sequence					
Step	Type	Description	Verdict		
1 Configure		The IUT is configured to transmit WSM_nExt in Table 7-2 using			
		channel 'pChannel' and include WAVE Element Extension fields			
		'Channel Number'.			
2	Stimulus	The IUT transmits WSM			
3	Verify	The IUT transmitted WSM	Pass / Fai		
4	Verify	WSM N-Header contains 'Subtype/Option Indicator/WSMP Version'	Pass / Fai		
		indicating '0x0B' (Subtype=0, Opt Ind = 1, Version = 3)			
5 Verify		WSM N-Header contains 'Wave Info Element' contains 'Count'	Pass / Fai		
		matching the number of 'Wave Info Element' included in the			
		message (>= 1, cannot be '0')			
6	Verify	WSM N-Header contains 'WAVE Info Element' containing 'WAVE	Pass / Fai		
		Element ID' indicating '15' (Channel Number)			
7	Verify	WSM N-Header contains 'WAVE Elem Length' indicating '1'	Pass / Fai		
8	Verify	WSM N-Header contains 'WAVE Elem' data indicating the Channel	Pass / Fai		
		Number value equal to 'pChannel'			
9	Procedure	Repeat steps 1-8 for other values of 'pChannel' listed in Section			
		4.1.1.1.			

11:29:40.495	Log	Resource "Log" opened. [0 ms]
11:29:40.496	TestPlan	TP-16093-WSM-ROP-BV-01 started.
11:29:40.496	TestStep	DSRCStep Base class RUN
11:29:40.758	TestStep	<pre>getWSMPHeader() Subtype = 0</pre>
11:29:40.758	TestStep	getWSMPHeader() Option indicator = 1
11:29:40.758	TestStep	<pre>getWSMPHeader() WSMP Version = 3</pre>
11:29:40.758	TestStep	getWSMPHeader() N Header WAVE Info Element Count = 0
11:29:40.758	TestStep	getWSMPHeader() Channel Number = 172
11:29:40.758	TestPlan	TP-16093-WSM-ROP-BV-01 completed with verdict 'Pass'. [
11:29:40.758	Summary	Summary of run started 03/20/2018 11:29:40
11:29:40.758	Summary	TP-16093-WSM-ROP-BV-01 261 m
11:29:40.758	Summary	
11:29:40.758	Summary	TestPlan completed successfully in 0.26 s

Test Spec Overview – 1609.4


Multi-Channel Operation

Conformance test specifications for Wireless Access in Vehicular Environments (WAVE)

— Multi-channel Operation Test Suite Structure and Test Purposes (TSS & TP)

• TC(1)

TP Naming Conversion

		,
<root> = root</root>	16094	
<gr> = group</gr>	RXT	Receive
	TXT	Transmit
<sgr> =sub- group</sgr>	MDE	Channel Access Mode
	PER	Performance
	IP6	IPv6
	BV	Valid Behavior tests
<x> = type of testing</x>	BI	Invalid Syntax or Behavior Tests
<nn> = sequential number</nn>		01 to 99

1609.4	
TP-16094-RXT-MDE-BV-01	Add
TP-16094-RXT-MDE-BV-02	Add
TP-16094-TXT-MDE-BV-01	Add
TP-16094-TXT-MDE-BV-02	Add
TP-16094-TXT-PFR-BV-03	Add

Ex) TP-16094-RXT-MDE-BV-01

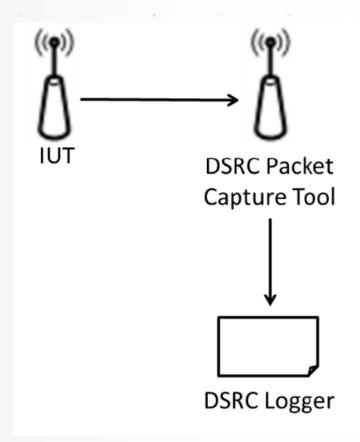
 Transmit WSMs in continuous channel mode (non-switching) and verify IUT receives the transmitted messages.

Step	Type	Description	Verdict
1	Configure	IUT to receive WSM messages in continuous channel mode on 'pChannel'	
2	Configure	Test Equipment to transmit WSMs in continuous channel mode on	
		'pChannel' with 'pDataRate' at 'pWSMRepeatRate'.	
3	Stimulus	Test Equipment to continuously transmit WSM messages	
4	Verify	IUT receives WSM messages available on 'pChannel' at every	PASS / FAIL
		'pWSMRepeatRate'.	
5	Procedure	Repeat steps 1-4 for each supported value of 'pDataRate' in Table 4-2	
6	Procedure	Repeat steps 1-5 for each supported value of 'pChannel' in Table 4-1	
7	Configure	The IUT to initial state	

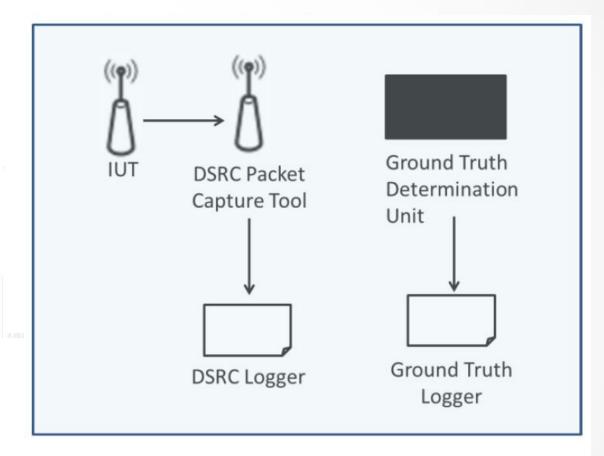
12:31:41.93	8 WavePro	Resource "WavePro" opened. [0 ms]	18
12:31:41.93	8 TestPlan	TP-16094-RXT-MDE-BV-01 started.	
12:31:41.93	9 TestStep	DSRCStep Base class RUN	
12:31:52.27	1 TestStep	WSM message received on Channel 0	
12:31:52.27	1 TestStep	DEMO DUT receives WSM messages on Channel 172 with data rate WLM_RATE_6M at every 20 messages per second TRUE	
12:31:52.27	1 TestPlan	TP-16094-RXT-MDE-BV-01 completed with verdict 'Pass'. [10332 ms]	
12:31:52.27	1 Summary	Summary of run started 03/20/2018 12:31:41	177
12:31:52.27	1 Summary	TP-16094-RXT-MDE-BV-01 10332 ms Pass	8
12:31:52.27	1 Summary		100

Test Spec Overview – J2945/1

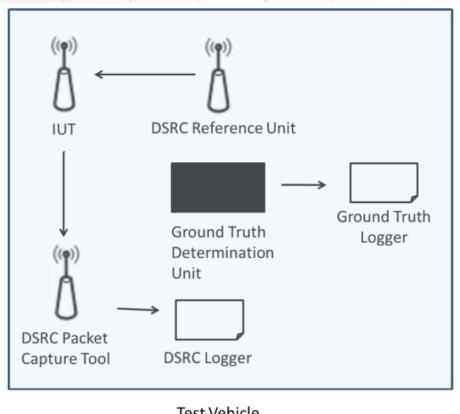
V2V Safety

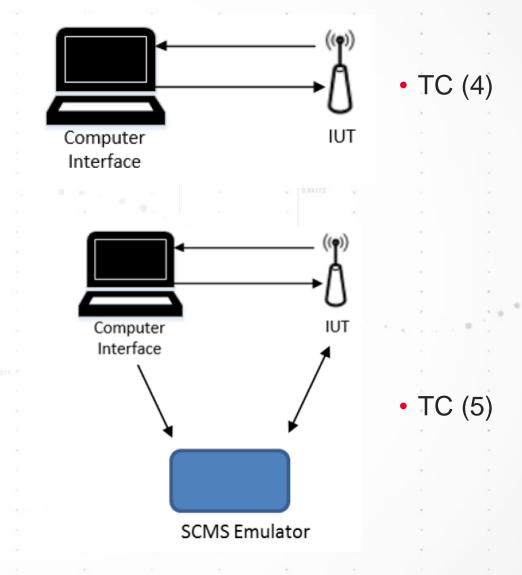

Conformance test specifications for SAE J2945/1

On-board System Requirements for V2V Safety Communications
 Test Suite Structure and Test Purposes (TSS & TP)


SAE: Society of Automotive Engineers

SCMS: Security Certificate Management System




Test Vehicle

TC (2)

Test Vehicle

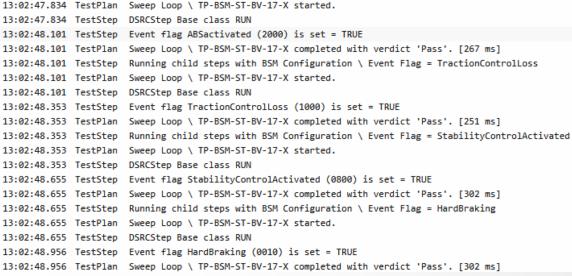
• TC (3)

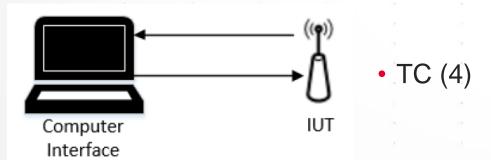
Naming Conversions

<root $>$ = root	BSM	
$\langle gr \rangle = group$	SV	Stationary Vehicle
	MV	Moving Vehicle
	LD	Local Data
<x $>$ = type of testing	BV	Valid Behaviour tests
	BI	Invalid Syntax or Behaviour Tests
<nn> = sequential number</nn>		01 to 99

TP-BSM-ST-BI-19
TP-BSM-ST-BV-01-X
TP-BSM-ST-BV-03-X
TP-BSM-ST-BV-08
TP-BSM-ST-BV-10-X
TP-BSM-ST-BV-11
TP-BSM-ST-BV-12
TP-BSM-ST-BV-13
TP-BSM-ST-BV-15
TP-BSM-ST-BV-17-X

2945.1

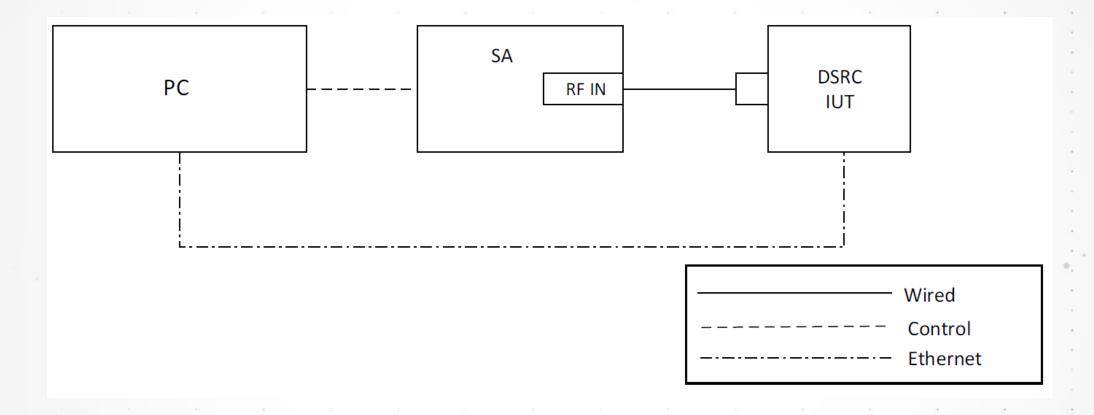

BSM: Basic Safety Messages


TP-BSM-MV-BV-17-X

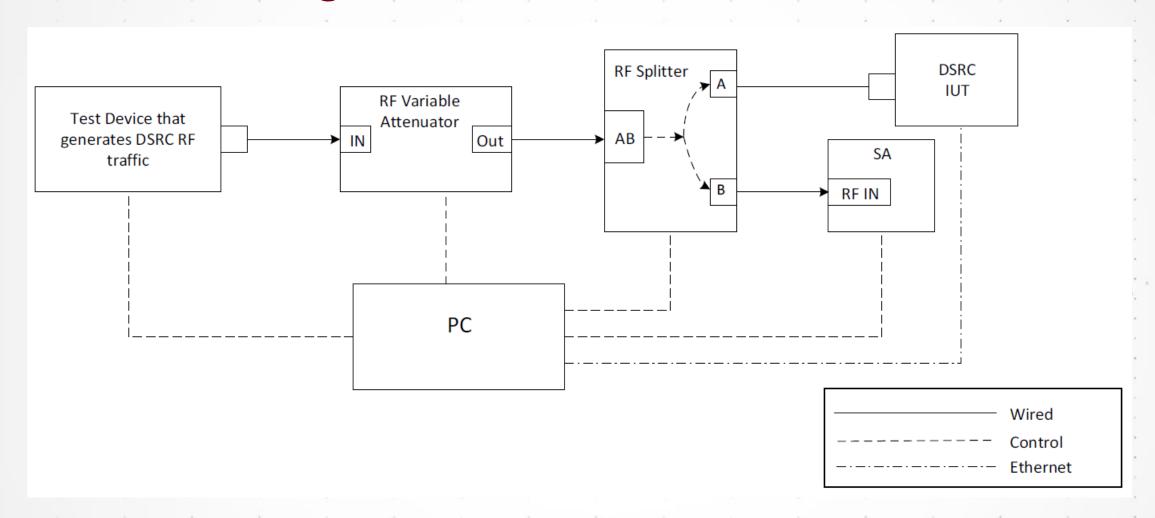
Verify certificate is not changed during event conditions unless the certificate expires

Step	Type	Description	Verdict
1	Verify	The IUT transmits BSMs with the DE_VehicleEventFlags element	
		not included	
2	Stimulus	One critical set of Event Flag from Section 7.6 is set	
3	Verify	The IUT transmits BSM containing full security certificate	Pass / Fail
4	Verify	The certificate of the BSM Transmitted in Step 1 and the BSM	Pass / Fail
		Transmitted in Step 3 are identical	
5	Stimulus	The certificate expiration time passes while the Event Flag set	
		remains persistent	
6	Stimulus	vCertChangeInterval time passes while the Event Flag set remains	
		persistent	
7	Stimulus	The IUT transmits at least one BSM	
8	Verify	The certificate of Step 6's BSM and Step 3's BSM are different P	
9	Procedure	Steps $1-7$ are repeated for all critical event sets from Section 7.6	
			-

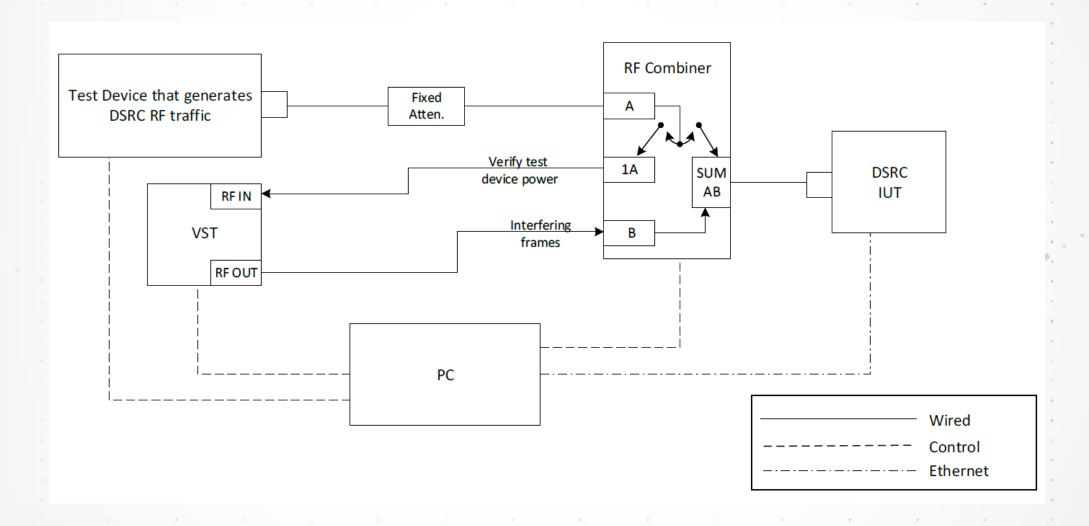
Running child steps with BSM Configuration \ Event Flag = ABSactivated

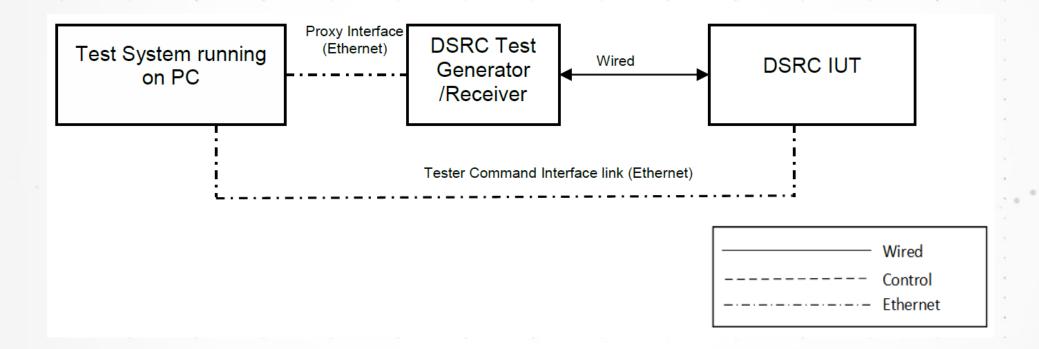

Test Spec Overview – 802.11

- Conformance test specifications for Wireless Access in Vehicular Environments (WAVE)
 - 802.11 Test Suite Structure and Test Purposes (TSS & TP)


SA: Signal Analyzer

VST: Vector Signal Transceiver





Naming Conversion

_1	1	
<root> = root</root>	80211	
<gr> = group</gr>	RXT	Receive
	TXT	Transmit
<sgr> =sub- group</sgr>	MAC	Medium Access Control Layer
	PHY	Physical Layer
	BV	Valid Behavior tests
<x> = type of testing</x>	BI	Invalid Syntax or Behavior Tests
<nn> = sequential number</nn>		01 to 99

▲ 802.11p

TP-80211-RXT-MAC-BV-01 (Rx MAC Validation)

TP-80211-RXT-PHY-BV-01 (Rx Input Sensitivity)

TP-80211-RXT-PHY-BV-02 (Adjacent Channel Rejection)

TP-80211-RXT-PHY-BV-03 (non-Adjacent Channel Rejection)

TP-80211-RXT-PHY-BV-04 (Rx Max Power Input)

TP-80211-RXT-PHY-BV-05 (Rx RSSI)

TP-80211-TXT-MAC-BV-01 (Tx MAC Validation)

TP-80211-TXT-PHY-BV-01 (Spectrum Mask)

TP-80211-TXT-PHY-BV-02 (EVM Frequency Error)

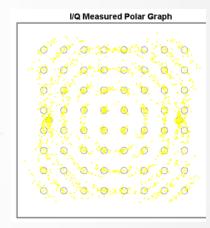
TP-80211-TXT-PHY-BV-03 (EVM Symbol Clock Error)

TP-80211-TXT-PHY-BV-04 (EVM %RMS)

TP-80211-TXT-PHY-BV-05 (Spectral Flatness)

TP-80211-TXT-PHY-BV-06 (EVM Center Frequency Leakage)

TP-80211-TXT-PHY-BV-07 (Tx Power)



Ex) TP-80211-TXT-PHY-BV-04

 Verify the relative constellation RMS error and transmit modulation accuracy of IUT is within conformance limit

3	Verify	The Signal Analyzer captures <i>pNumberOfFrames</i> frames,	PASS / FAIL
		demodulates the signal and computes EVM indicating value not	
		greater than the values as shown in table below.	

Relative Constellation Error Table Vs Data Rate						
Coding Rate	Modulation	Date Rate (MBPS)	Relative Constellation Error (dB)	Error Vector Magnitude (EVM) (% RMS)		
1/2	BPSK	3	-5	56.2		
3/4	BPSK	4.5	-8	39.8		
1/2	QPSK	6	-10	31.6		
3/4	QPSK	9	-13	22.3		
1/2	16-QAM	12	-16	15.8		
3/4	16-QAM	18	-19	11.2		
² / ₃	64-QAM	24	-22	7.9		
3/4	64-QAM	27	-25	5.6		

