

# COMPONENTS • POWER • EASE-OF-USE • PERFORMAN INOVATION • EFFICIENCY • EXPERTISE • CONFIGURA ME • VOLUME • RELIABILITY • FLEXIBILITY • LONGEVI MWORK • PROVEN • DENSITY • QUALIFIED • COMPET SOLUTIONS • INTEGRATION • SUPPORT • OPPORTUNIT

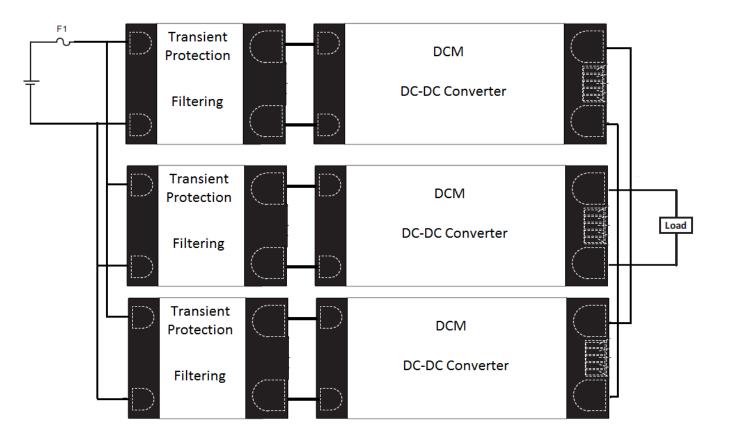
Maximum Load: The Wrong Specification for Pulsed Power

Jerrad Choi *Field Application Engineer* 

# Agenda

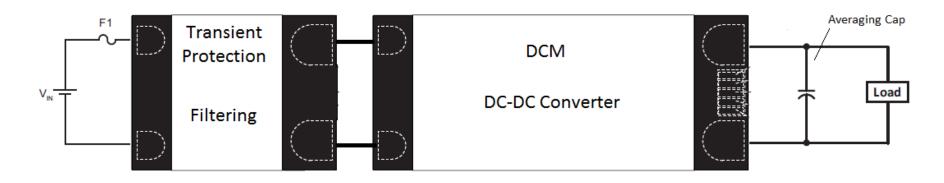
- > Power Averaging: Definition and Criteria
- > **Power Configuration**: Typical Approach vs. Averaging Approach
- > Solution Sizing: Capacitor & Power Supply Selection
- > Power Averaging: Configuration Example
- > Conclusions

#### **Power Averaging:** Definition


- Configuring the power supply to deliver the average power to the load
- A capacitor is used
   to deliver the peak power to the load

#### Power Averaging: Criteria

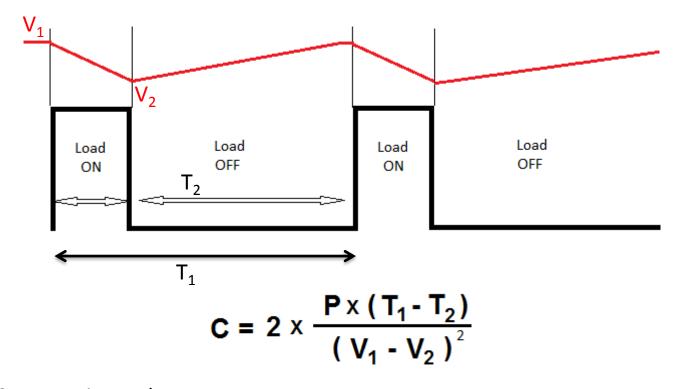
- > Periodic load
- > The load has a wide input range
- > The max on-time and min off-time are known
- > Space and weight are critical


# **Power Configuration:** Typical Approach

#### 900 Watt Periodic Load 25% Duty Cycle



### **Power Configuration:** Averaging Approach

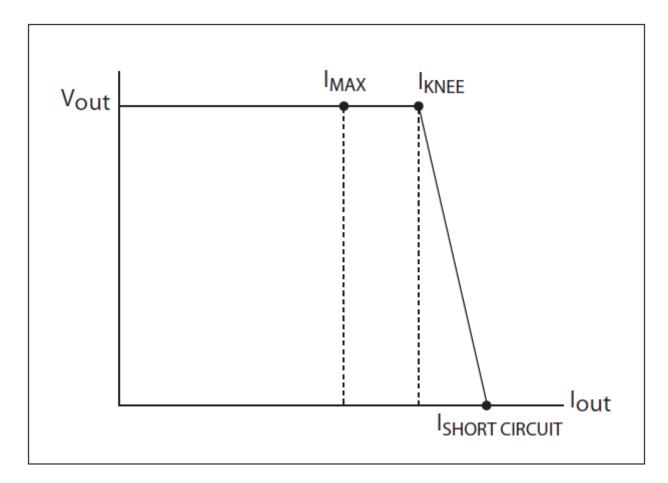

#### 900 Watt Periodic Load 25% Duty Cycle



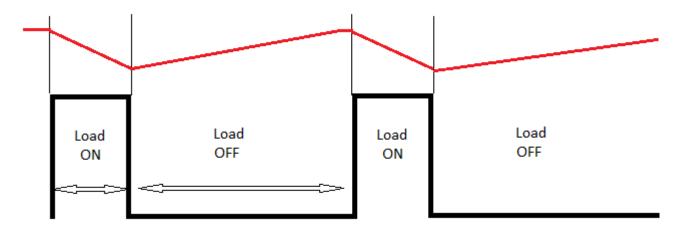
# Solution Sizing: Capacitor Selection

- > Peak load power
- > Maximum load on time
- > Minimum load off time
- > Load input voltage range

#### Solution Sizing: Capacitor Selection

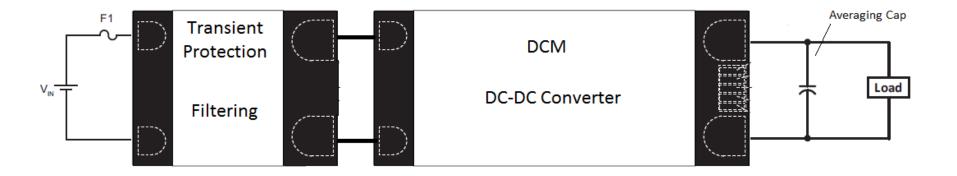



C = capacitor value  $T_1 - T_2$  = load ON duration  $V_1 - V_2$  = voltage drop at capacitor during load ON

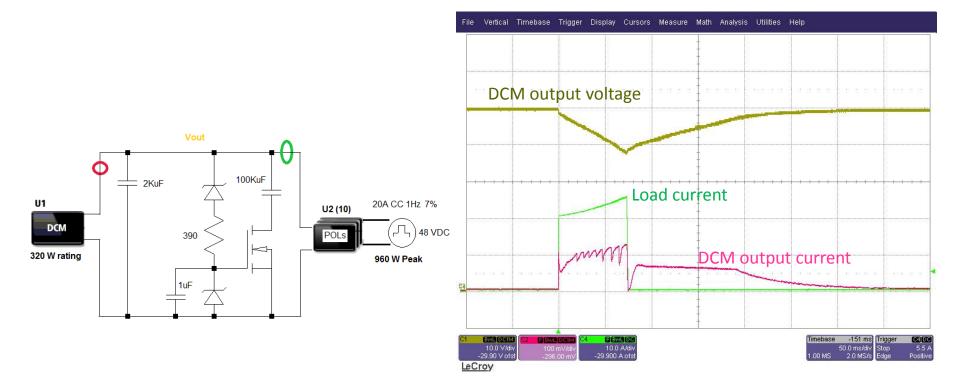

# Solution Sizing: Power Supply Selection

- > Capable of recharging the capacitor to initial voltage
- > Must be stable during operation
- > Must be capable of operating in current limit
- > Must be capable of operating in power limit

## Solution Sizing: Power Supply Selection




# Solution Sizing: Power Supply Selection




$$I = C \times \frac{dV}{dt}$$

# **Power Averaging:** Configuration



#### **Power Averaging:** Example



#### VICOR



#### Power System Designer™

**VI**COR PowerBench<sup>™</sup>

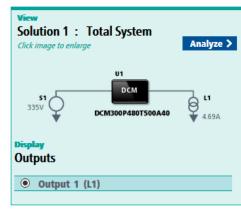
Vicor Website | All PowerBench Tools | Provide Feeback

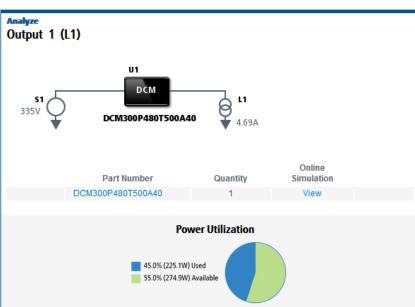
Vicor's Power System Designer provides system designers unprecedented flexibility to architect and optimize end-to-end power subsystems. Choose to find a solution for a single output or multiple outputs. Vicor's Power System Designer can do both.

| ○ Search for a single output solution |                 |              |              |                        |                                                    |                          |                               |          |  |  |  |
|---------------------------------------|-----------------|--------------|--------------|------------------------|----------------------------------------------------|--------------------------|-------------------------------|----------|--|--|--|
| Search for a multiple output solution |                 |              |              |                        |                                                    |                          |                               |          |  |  |  |
| Enter<br>Power Req                    | uirements       | i            |              |                        |                                                    |                          |                               |          |  |  |  |
| Input Specific                        | ations          |              |              |                        |                                                    |                          |                               |          |  |  |  |
| Supply                                | Min<br>(Vdc)    | Nom<br>(Vdc) | Max<br>(Vdc) |                        |                                                    |                          |                               |          |  |  |  |
| ○ AC<br>● DC                          | 270             | 335          | 400          |                        |                                                    |                          |                               |          |  |  |  |
| Multiple Out                          | out Specificati | ions         |              |                        |                                                    |                          |                               |          |  |  |  |
| Output(s)                             | Min<br>(V)      | Nom<br>(V)   | Max<br>(V)   | Power/Current          | Regulation                                         | Isolation<br>From Source | Output Return                 |          |  |  |  |
| Output 1                              |                 | 48           |              | Watts     Amps     225 | <ul> <li>Regulated</li> <li>Fixed Ratio</li> </ul> | Required                 | -0UT1 ~                       |          |  |  |  |
|                                       |                 |              |              |                        |                                                    |                          | Add Output Reset Search for a | System > |  |  |  |
|                                       |                 |              |              |                        |                                                    |                          |                               |          |  |  |  |

| View<br>Available Solutions |                                          |                                              |                                        |                            |                                |                          |                             |                                |                                |                                                                                      |  |
|-----------------------------|------------------------------------------|----------------------------------------------|----------------------------------------|----------------------------|--------------------------------|--------------------------|-----------------------------|--------------------------------|--------------------------------|--------------------------------------------------------------------------------------|--|
| Solution                    | Total<br>Footprint<br>(cm <sup>2</sup> ) | Front End<br>Footprint<br>(cm <sup>2</sup> ) | POL<br>Footprint<br>(cm <sup>2</sup> ) | Total<br>Efficiency<br>(%) | Front End<br>Efficiency<br>(%) | POL<br>Efficiency<br>(%) | Solution<br>Price<br>1 Unit | Solution<br>Price<br>500 Units | Solution<br>Component<br>Count | Figure of Merit                                                                      |  |
| Solution 1                  | 11                                       | 0                                            | 11                                     | 91.1                       | 0.0                            | 91.1                     | \$193.00                    | \$132.00                       | 1                              | Lowest Component Count<br>Lowest Price<br>Recommended Best Fit<br>Smallest Footprint |  |
| Solution 2                  | 36                                       | 14                                           | 21                                     | 91.3                       | 97.2                           | 93.9                     | \$364.72                    | \$223.42                       | 4                              | Highest Operating Efficiency                                                         |  |

#### VICOR





**Power System Designer™ VI**COR PowerBench<sup>™</sup>

Vicor Website | All PowerBench Tools | Provide Feeback

| Reference<br>Your Enter | Reference<br>Your Entered Power Requirements |         |         |              |              |             |               |  |  |  |  |  |
|-------------------------|----------------------------------------------|---------|---------|--------------|--------------|-------------|---------------|--|--|--|--|--|
| Input Supply            | Min (V                                       | dc) Nom | (Vdc)   | Max (Vdc)    |              |             |               |  |  |  |  |  |
| DC                      | 270.                                         | 0 33    | 5.0     | 400.0        |              |             |               |  |  |  |  |  |
|                         |                                              |         |         |              |              | Isolation   |               |  |  |  |  |  |
| Output(s)               | Min (V)                                      | Nom (V) | Max (V) | Power/Curren | t Regulation | From Source | Output Return |  |  |  |  |  |
| Output 1                | 48.0                                         | 48.0    | 48.0    | 225.0 W      | Regulated    | N           | -0UT1         |  |  |  |  |  |

|   | Solution     | Total<br>Footprint<br>(cm <sup>2</sup> ) | Front End<br>Footprint<br>(cm <sup>2</sup> ) | POL<br>Footprint<br>(cm <sup>2</sup> ) | Total<br>Efficiency<br>(%) | Front End<br>Efficiency<br>(%) | POL<br>Efficiency<br>(%) | Solution<br>Price<br>1 Unit | Solution<br>Price<br>500 Units | Solution<br>Component<br>Count | Figure of Merit                                                                      |
|---|--------------|------------------------------------------|----------------------------------------------|----------------------------------------|----------------------------|--------------------------------|--------------------------|-----------------------------|--------------------------------|--------------------------------|--------------------------------------------------------------------------------------|
| ۲ | ) Solution 1 | 11                                       | 0                                            | 11                                     | 91.1                       | 0.0                            | 91.1                     | \$193.00                    | \$132.00                       | 1                              | Lowest Component Count<br>Lowest Price<br>Recommended Best Fit<br>Smallest Footprint |
| С | Solution 2   | 36                                       | 14                                           | 21                                     | 91.3                       | 97.2                           | 93.9                     | \$364.72                    | \$223.42                       | 4                              | Highest Operating Efficiency                                                         |







#### Conclusion

### **Power Averaging**

- 1. Saves system weight
- 2. Saves system space
- 3. Saves system cost



# COMPONENTS • POWER • EASE-OF-USE • PERFORMAN INOVATION • EFFICIENCY • EXPERTISE • CONFIGURA ME • VOLUME • RELIABILITY • FLEXIBILITY • LONGEVI MWORK • PROVEN • DENSITY • QUALIFIED • COMPENSITY SOLUTIONS • INTEGRATION • SUPPORT • OPPORTUNI

Thank You