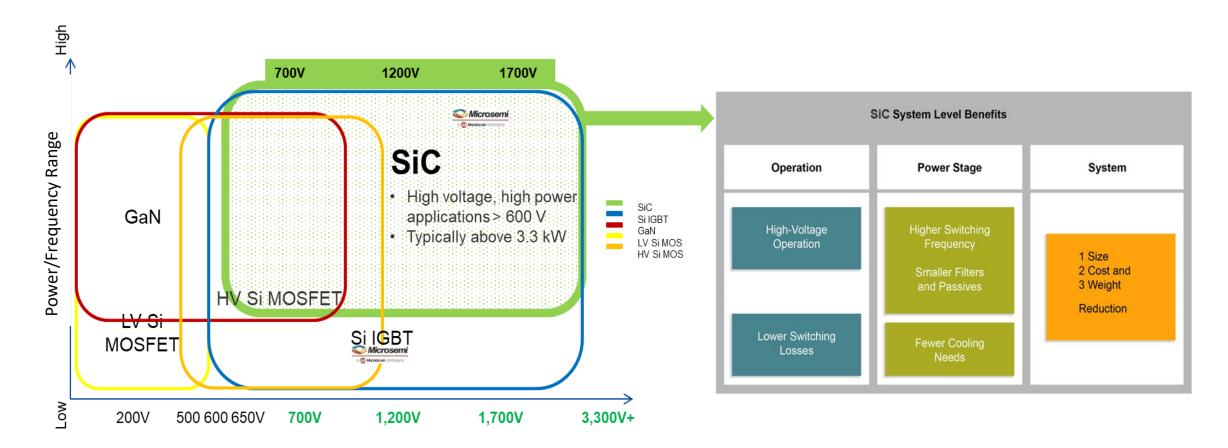
Microchip Silicon Carbide (SiC) Power Solutions

A Leading Provider of Smart, Connected and Secure Embedded Solutions

Douglas Min – Principal Embedded Solutions Engineer

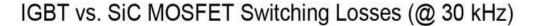
Agenda

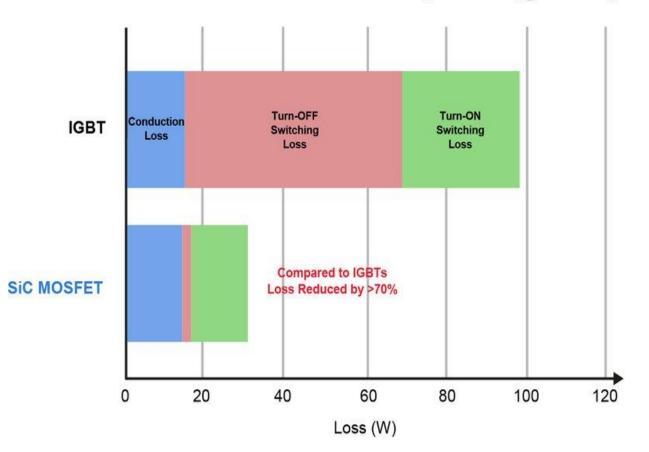
- SiC Technology Differentiation
- Reliability Considerations
- Target Markets and Applications
- SiC Power Solutions
- Quality, Supply and Support
- Key Takeaways


SiC Differentiation

Compared to Silicon and GaN

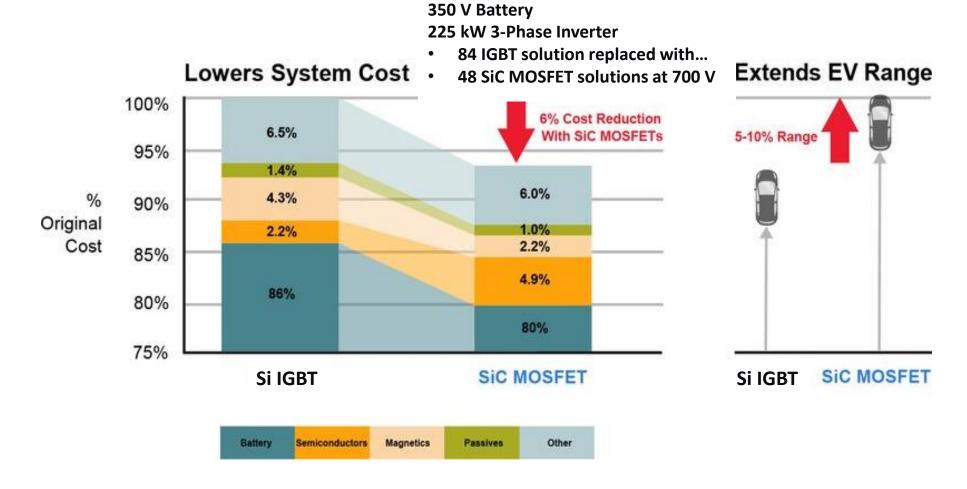
When to Consider SiC vs. Si and GaN


 High-voltage power electronics applications using SiC power semiconductors to achieve maximum efficiency, power density and reliability



SiC Benefits Compared to Si and IGBT

SiC vs. IGBT SiC vs. Si



Characteristics	SiC vs. Si	Results	Benefits
Breakdown field (MV/cm)	10x higher	Lower on- resistance	Higher efficiency
Electron sat. velocity (cm/s)	2x higher	Faster switching	Size reduction
Bandgap energy (ev)	3x higher	Higher junction temperature	Improved cooling
Thermal conductivity (W/m.K)	3x higher	Higher power density	Higher current capabilities

SiC Increases Efficiency, Lowers System Cost

 Key takeaway: SiC offers better performance and overall lower system cost

SiC Reliability Considerations

Why Ruggedness Matters in Power Conversion

Power conversion system should:

Operate routinely & reliably

Meet or exceed desired service lifetime

Survive electrical transients

Not rugged?

You should care about: Oxide stability

Oxide lifetime

Body diode stability

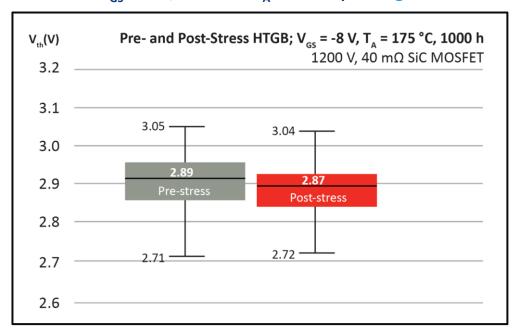
Survivability

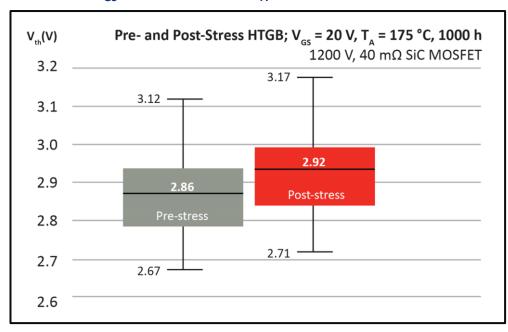
Oxide stability

Oxide lifetime

Body diode stability (also improves cost) Avalanche ruggedness

Short circuit withstand





Ruggedness | Gate Oxide Stability

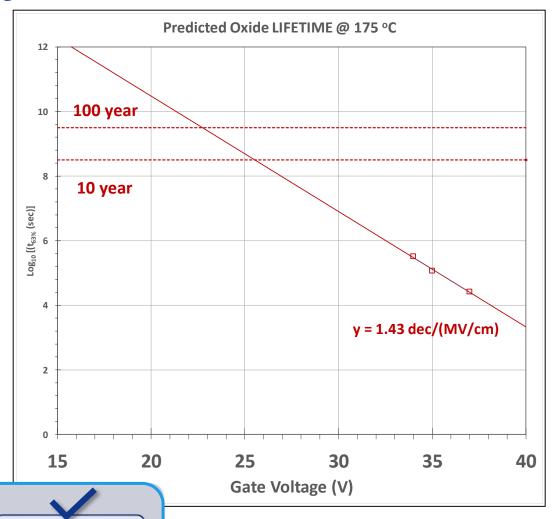
Stress: $V_{GS} = -8 \text{ V}$, 1000 h at $T_{\Delta} = 175 \text{ C}$ | Change: -0.02 V

Stress: $V_{GS} = 20 \text{ V}$, 1000 h at $T_{\Delta} = 175 \text{ C}$ | Change: +0.06 V

V_{th} measurements before and after 1000 hours of high-temperature gate bias (HTGB) stress shows negligible shift

Operate routinely & reliably

Meet (exceed) desired service lifetime



Ruggedness | Gate Oxide Lifetime

- i. Oxide failure (breakdown) accelerated with temperature and electric field across the oxide
- ii. Failure modes extracted from Weibull plots
- iii. Arrhenius equation used to predict oxide lifetime

 Data from production-grade 1200 V, 40 mOhm MOSFET

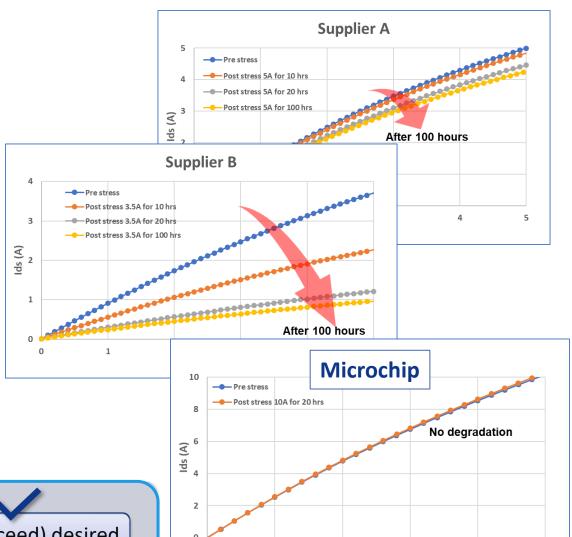
Oxide predicted to last more than 100 years at recommended V_{GS} and Tj = 175 C

Application benefits

Operate routinely & reliably

Meet (exceed)
desired service
lifetime

Survive electrical transients


Ruggedness | Body Diode Stability

- SiC MOSFET body diodes stressed with a constant forward current
- ii. Body diode I-V curves and R_{DSon} measurements made before and after stress

Data* from commercially available 1200 V, 80 mOhm MOSFETs

*Courtesy: A. Agarwal and M. Kang, Ohio State University

No degradation observed in Microchip body diodes
Also, lower component cost by using body diode and
eliminating Schottky

Application benefits

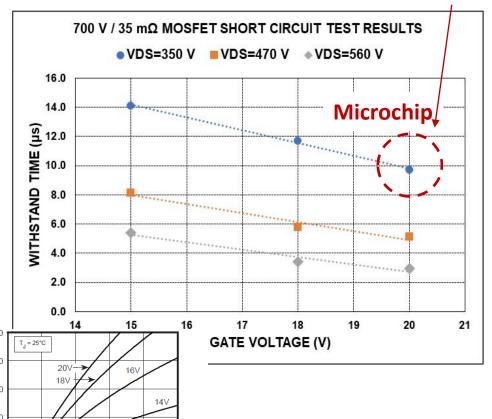
Operate routinely & reliably

Meet (exceed) desired service lifetime

Vds (V)

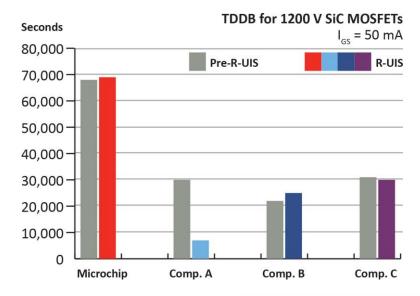
Ruggedness | Short Circuit Capability

D, DRAIN CURRENT (A)

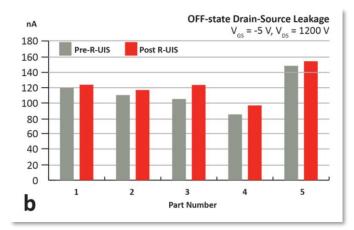

- i. Short circuit emulates the application condition of shorting the MOSFET's drain-source across the dc link
- ii. Cells are enhanced (MOSFET is ON); peak current intended to distribute uniformly across die

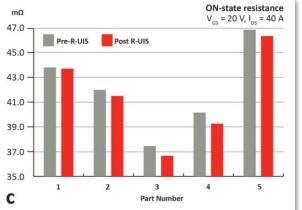
 Data from production-grade 700 V, 35 mOhm MOSFET
 - Designed to survive short circuit events, even at higher dc voltages (with adequate gate driver)

Application benefits



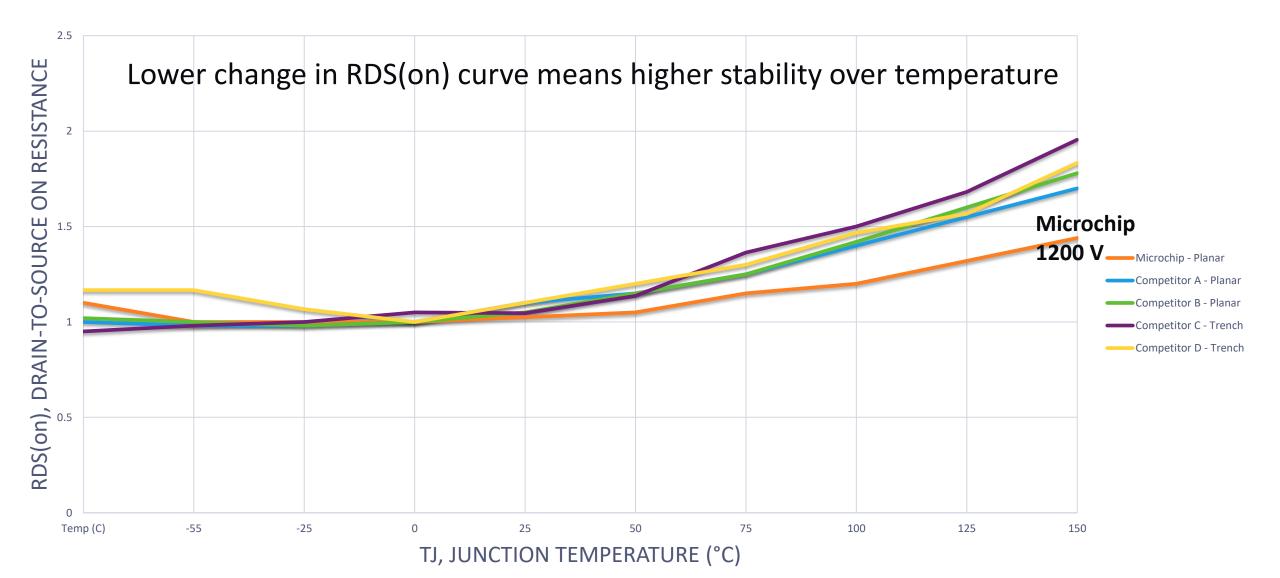
Ruggedness | Avalanche / Repetitive-UIS

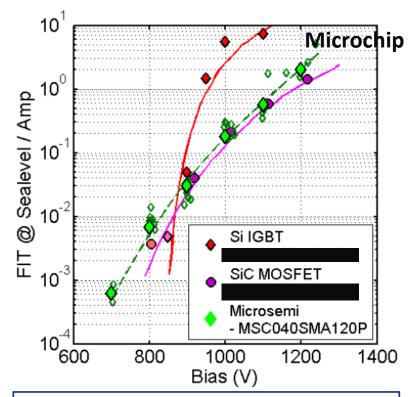

- Measures the MOSFET's ability to repetitively sustain an avalanche current being switched off from an unclamped inductive load (R-UIS)
- ii. Cells are not enhanced (MOSFET is OFF); peak current increases rapidly until $V_{DS} = V_{BR}$; avalanche current likely to crowd around die edge Data from commercially available 1200 V, 80 mOhm MOSFETs

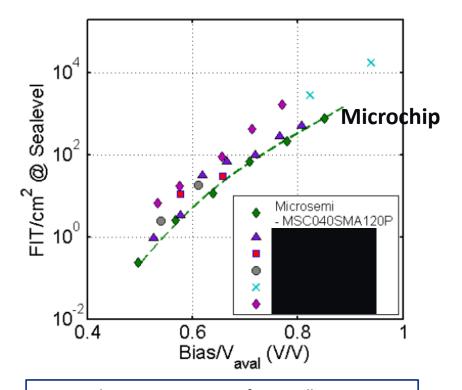


Microchip devices show excellent avalanche ruggedness and parametric stability following 100K pulses of R-UIS

Application benefits




Ruggedness | RDSon vs. Temperature

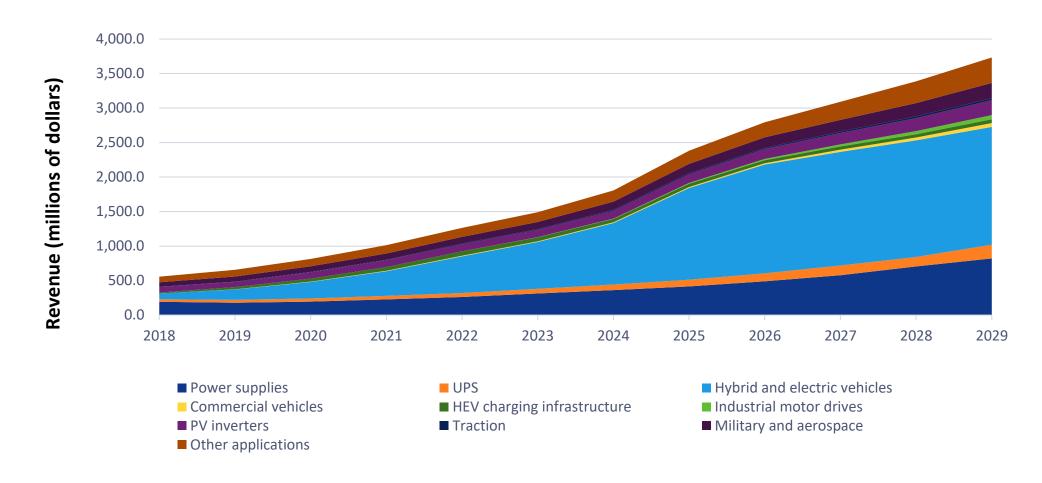


Terrestrial Neutron Susceptibility

- Neutrons can damage or degrade system performance at sea level or in higher elevations
- Application benefit: Using SiC provides higher immunity to terrestrial radiation and lowers FIT rate across low to high elevations locations

SiC MOSFETs have 10X lower FIT rate than comparable Si IGBTs @ rated voltage

Microchip SiC MOSFETs perform well against SiC competition regarding neutron irradiation



SiC Markets and Portfolios

SiC Discrete, Module and Gate Driver Solutions

SiC Semiconductor Forecast by Applications

Target Markets and Applications

Transportation* – Traction APU, inverter, heavy duty vehicles

Data Center* – PFC, DC/DC PSU

Automotive* - OBC, DC/DC, traction inverter, E-fuse

Industrial – Induction heating, welding, SemiCap

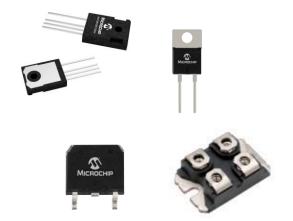
Military/Aerospace – Power distribution, actuation

Renewable – PV inverters, wind

Grid – Solid state circuit breakers (E-fuse), charging infrastructure

Medical – Imaging, surgical power, implantable

^{*}Microchip Megatrend Markets


SiC Solutions Portfolios

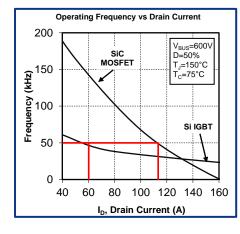
Product Family	Product Package	Sub-product Family	Key Differentiation
Power Discretes		 SiC die Discrete SiC MOSFETs Discrete SBDs (Schottky Barrier Diodes) 	 One of the broadest portfolios on the market QSS (Quality, Supply, Support) 30+ years in dev, design and support of power discretes
Power Modules		 SiC MOSFET power modules SiC Diode power modules 	 Standard packages and architectures available Standard and Custom power modules Flight proven heritage on both Boeing and Airbus Platforms = proven reliability in critical applications High design flexibility
Integrated Power Solutions		Power Control Module (PCM), Hybrid Power Drive Modules (HPD/HPE)	 Highest level of integration and reliability for flight critical applications Standard SiC solution available as well as semi-custom SiC and IGBT offerings available Partial discharge, current monitoring, over voltage, solenoid drive, short circuit protection, digital interface for control, screw and solder options
Digital Programmable Gate Drivers		 Gate Driver Cores Module Adapter Boards Plug & Play Gate Driver Boards 	 Patented Augmented Switching™ reduces voltage overshoot, ringing, system noise, EMI Robust Short Circuit protection rapidly detects and protects against overcurrent faults

SiC Discretes: 700 – 1700 V

SiC Schottky Barrier Diodes (SBDs)

www.microchip.com/SiC

Microchip Treelink Product Navigation


Sie Senistery Barrier Blodes (SBBS)				
Voltage	I _{F(avg)} Amps	V _F Volts Part Number		Package
			MSC010SDA070D/S	Die
	10	1.5	MSC010SDA070K	TO-220
			MSC010SDA070B	TO-247
			MSC030SDA070D/S	Die
700	30	1.5	MSC030SDA070K	TO-220
700	30	1.5	MSC030SDA070B	TO-247
			MSC030SDA070S	D³PAK
			MSC050SDA070D/S	Die
	50	1.5	MSC050SDA070B	TO-247
			MSC050SDA070S	D³PAK
			MSC010SDA120D/S	Die
	10	1.5	MSC010SDA120B	TO-247
			MSC010SDA120K	TO-220
	15	1.5	MSC015SDA120D/S	Die
			MSC015SDA120B	TO-247
			MSC015SDA120K	TO-220
		1.5	MSC020SDA120D/S	Die
1200	20		MSC020SDA120B	TO-247
			MSC020SDA120K	TO-220
			MSC030SDA120D/S	Die
	30	1.5	MSC030SDA120B	TO-247
	30	1.5	MSC030SDA120K	TO-220
			MSC030SDA120S	D³PAK
			MSC050SDA120D/S	Die
	50	1.5	MSC050SDA120B	TO-247
			MSC050SDA120S	D³PAK
	10	1.5	MSC010SDA170D/S	Die
	10	1.5	MSC010SDA170B	TO-247
1700	30	1.5	MSC030SDA170D/S	Die
1700	30	1.5	MSC030SDA170B	TO-247
	50	1.5	MSC050SDA170D/S	Die
	30	1.5	MSC050SDA170B	TO-247

SIC MOSFETs

Voltage R _{DS(On) (typical)} Part Number Packa	ge
MSC090SMA070D/S Die	
90 mΩ MSC090SMA070B TO-247	
MSC090SMA070S D3PAK	
MSC060SMA070D/S Die	
MSC060SMA070B TO-247	
60 mΩ MSC060SMA070B4 T0-247-4	L
MSC060SMA070S D3PAK	
700 V MSC035SMA070D/S Die	
MSC035SMA070B TO-247	
35 mΩ MSC035SMA070B4 T0-247-4	L
MSC035SMA070S D3PAK	
MSC015SMA070D/S Die	
MSC015SMA070B TO-247	
15 mΩ MSC015SMA070B4 T0-247-4	L
MSC015SMA070S D3PAK	
MSC080SMA120D/S Die	
MSC080SMA120B TO-247	
80 mΩ MSC080SMA120B4 TO-247-4	L
MSC080SMA120S D3PAK	
MSC080SMA120J SOT-227	
1200 V MSC040SMA120D/S Die	
MSC040SMA120B TO-247	
40 mΩ MSC040SMA120B4 TO-247-4	L
MSC040SMA120S D3PAK	
MSC040SMA120J SOT-227	
MSC025SMA120D/S Die	
MSC025SMA120B TO-247	
25 mΩ MSC025SMA120B4 TO-247-4	L
MSC025SMA120S D3PAK	
MSC025SMA120J SOT-227	
MSC017SMA120D/S Die	
MSC017SMA120B TO-247	
17 mΩ MSC017SMA120B4 TO-247-4	L
MSC017SMA120S D3PAK	
MSC017SMA120J SOT-227	
MSC750SMA170D/S Die	
MSC750SMA170B TO-247	
750 mΩ MSC750SMA170B4 T0-247-4	L
MSC750SMA170S D3PAK	
1700 V MSC035SMA170D/S Die	
MSC025SMA170B TO 247	
35 mΩ MSC035SMA170B4 T0-247-4	L
MSC035SMA170S D3PAK	

SiC Power Module for Higher Power Density

Parameter	Microchip Microchip APTGLQ300A120G APTMC120AM20CT1AG		Comparison SiC vs. Si
Semiconductor type	Trench4 Fast IGBT	SiC MOSFET	
Ratings @ Tc=25°C	500 A/1200 V	143 A/1200 V	~3.5 x lower
Package type	SP6 – 108x62 mm	SP1 – 52x41 mm	~3.0 x smaller
Current @ 30 kHz Tc=75°C, D=50%, V=600 V	130 A	130 A	-
Current @ 50 kHz Tc=75°C, D=50%, V=600 V	60 A	115 A	~2.0 x higher
Eon+Eoff @ 100 A Tj=150°C, V=600 V	16.0 mJ	3.4 mJ	~5.0 x lower

MORE POWER @
HIGHER SWITCHING FREQUENCY
in
SMALLER VOLUME

SiC Power Module Products Overview

Microchip SiC Die Inside!

SiC Diode Power Modules

STD Configurations	Voltage	Current (A) Tc=80 C	Package
3 phase bridge		50	SP1
Dual common cathode	700 V	100 to 200	D1P
Full bridge	700 V	50 to 200	SP1, SOT227 & SP6C
Phase leg		100 to 600	D1P & SP6C
3 phase bridge		50	SP1
Dual common cathode	1200 V	100 to 200	D1P
Full bridge	1200 V	50 to 200	SP1, SOT227 & SP6C
Phase leg		100 to 600	D1P & SP6C
3 phase bridge		50	SP1
Dual common cathode	1700 V	100 to 200	D1P
Full bridge	1700 V	50 to 200	SP1, SOT227 & SP6C
Phase leg		100 to 600	D1P & SP6C

Can't find the right module in the standard product portfolio?

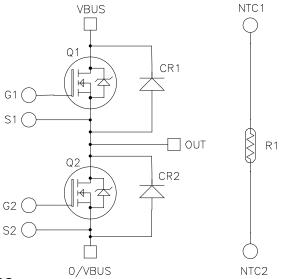
We can modify an existing one (or create a full custom module) for you!

SiC MOSFET Power Modules

STD Configurations	Voltage	RDS(on) (mR)	Current (A) Tc=80 C	Package	
3 phase bridge		15	97	SP3F	
Boost chopper		15	97	SOT227	
Buck chopper		15	97	SOT227	
Full bridge	700 V	15	97	SP3F	
Phase leg		15 to 2.5	97 to 538	SP1, SP3F, D3, SP6C & SP6LI	
Triple phase leg		7.5 to 5	186 to 273	SP6P	
Vienna phase leg		15 to 7.5	97	SP3F & SP4	1
3 phase bridge		25	71	SP3F	1
Boost chopper		40 to 11	44 to 202	SOT227 & SP3F	
Buck chopper	1200 \/	40 to 11	44 to 202	SOT227 & SP3F	
Full bridge	1200 V	40 to 12.5	44 to 138	SP3F	1
Phase leg		40 to 2.1	44 to 754	SP1, SP3F, D3, SP6C & SP6LI	1
Triple phase leg		12.5 to 8.33	136 to 200	SP6P	
3 phase bridge		35	50	SP3F	NEW
Triple phase leg	1700 \/	17.5 to 11.7	96 to 140	SP6P	NEW
Phase leg	1700 V	35 to 2.9	50 to 530	SP1, SP3F, D3, SP6C & SP6LI	NEW
Full bridge		35 to 17.5	50 to 97	SP3F	NEW

1700 V versions in Q3 CY2021

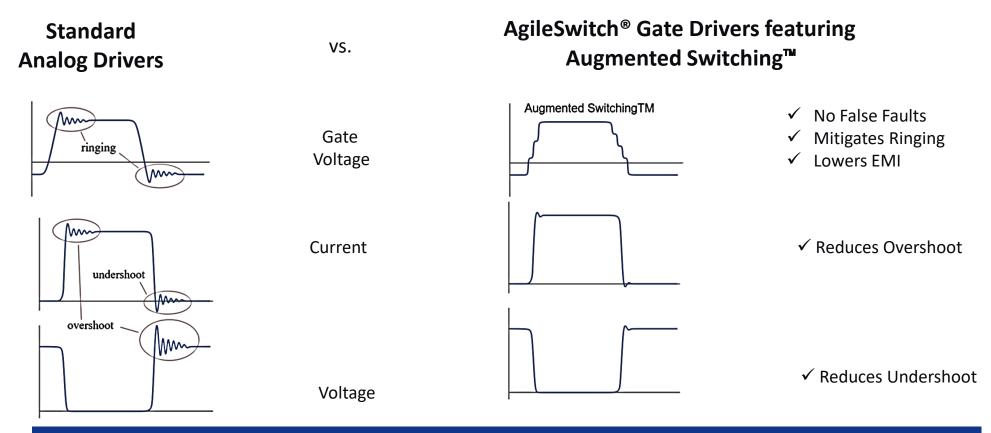
SP1


SOT-227

(Very) Low Inductance SP6LI Modules

Microchip SiC Die Inside!

PN	Voltage	Current Tc=80°C	RDSon Typ Tj=25°C	RDSon max. Tj=25°C	SiC Parallel Diode Ratings	
MSCSM70AM025CT6LIAG	700 V	538 A	2.5 mΩ	3.2 mΩ	300 A	
MSCSM120AM02CT6LIAG	1200 V	754 A	$2.1~\text{m}\Omega$	2.58 mΩ	300 A	
MSCSM120AM03CT6LIAG	1200 V	641 A	2.5 mΩ	3.1 mΩ	250 A	
MSCSM120AM042CT6LIAG	1200 V	394 A	4.2 mΩ	5.2 mΩ	180 A	
MSCSM170AM029CT6LIAG	1700 V	530 A	2.9 mΩ	3.75 mΩ	300 A	NEW
MSCSM170AM058CT6LIAG	1700 V	277 A	5.8 mΩ	7.5 mΩ	180 A	NEW



- Excellent coupling between VBUS and 0/VBUS bus bars
- Parasitic loop inductance measured at very low 2.9 nH
- Full screw terminals inter-connection for signal and power
- SP6 package industrial standard 62 mm x 108 mm footprint
- Phase leg configuration
- AIN or Si3N4 substrate with copper or AlSiC baseplate and NTC monitoring
- Module phase legs are easy to parallel and connection to DC bus is achieved without parasitic inductance
- Possibility to interconnect 3 modules together in vertical or horizontal position

Solving SiC Implementation Issues with AgileSwitch® Digital Programmable Gate Drivers

Superior SiC Digital Programmable Gate Driver Solution vs. Analog Solution

Reliable and efficient control of SiC MOSFETs – Noise, short circuits, overheating, overvoltage

- Up to 80% lower Vds overshoot
- Up to 50% lower switching losses
- Robust and fast short circuit protection

AgileSwitch® Digital Programmable Gate Drivers

ICs

In Development

Cores

1200 V

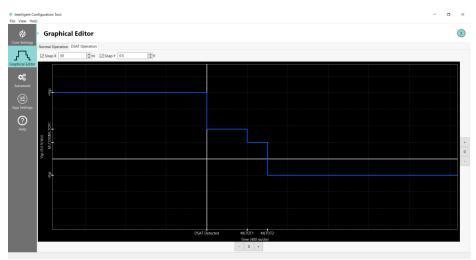
1700 V

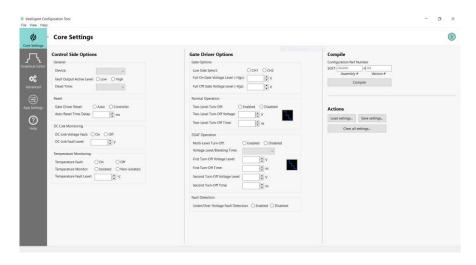
Plug & Play

1200 V

1700 V

3300 V




AgileSwitch® Development Kits (ASDAK)

ICT Intelligent Configuration Software optimizes:

- Augmented SwitchingTM profiles
- Fault reporting
- On and off gate voltages
- DC link and temperature trip levels

SiC SP6LI + Gate Driver Combo Kit (ASDAK+)

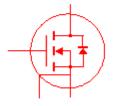
Each Kit Contains:

- Gate Driver
 - 2ASC-12A1HP Core
 - SP6CA1 Adapter Board
- Power Module
- Programming Kit
 - PicKit[™] 4
 - Programming Adapter

Power Module Options for Kit

- MSCSM70AM025CT6LIAG
- MSCSM120AM02CT6LIAG
- MSCSM120AM03CT6LIAG
- MSCSM120AM042CT6LIAG

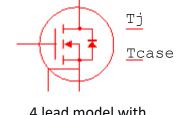
Seamless total system solution from evaluation to production


SPICE Simulation Tool and Models

- MPLAB® Mindi™ Analog Simulator
 - Microchip's free circuit simulation software is available for download at <u>www.microchip.com/Mindi</u>
 - Uses SIMetrix and SIMPLIS simulation environment for SPICE and piecewise-linear modeling respectively
- SiC MOSFET and SBD SPICE Models (PLECs models also available)
 - SiC MOSFET and Schottky Barrier Diode models available at <u>www.microchip.com/SiC</u>
 - Future release of Mindi will include SiC models
 - Two levels of simulation categories

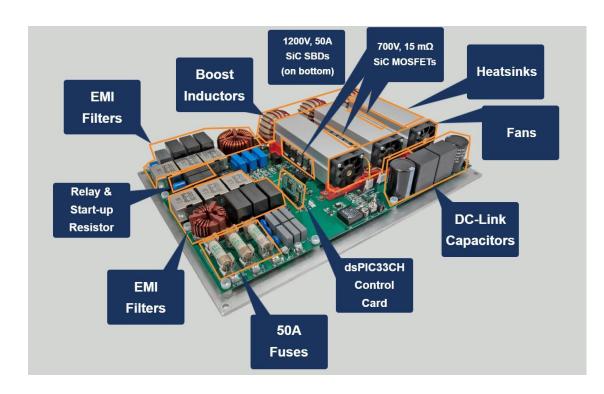
Level 1 (L1) - Electrical Models

3 lead model



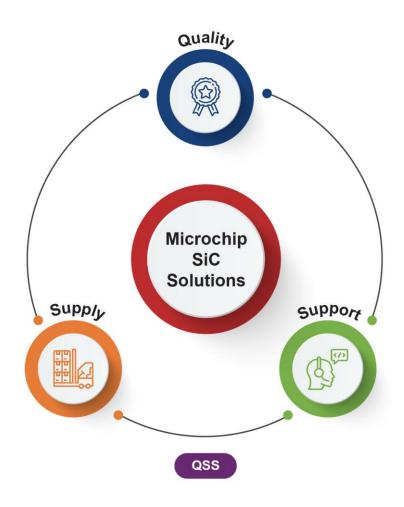
4 lead model (includes Kelvin sense)

Level 2 (L2) – Electrical and Thermal Models


3 lead model with temperature

4 lead model with temperature

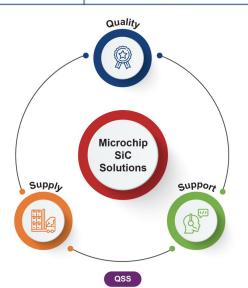
Vienna PFC Reference Design


Part Number: MSCSICPFC/REF5

- Design files, dsPIC33CH code and user's guide
- Simulate before design with SiC SPICE and PLECS PFC simulation models
- Hardware not included

- 30 kW Vienna rectifier topology
- 98.6% peak efficiency
- 3-phase 380/400 V, 50/60 Hz AC input with 700 V DC output voltage
- Design for 20% over voltage on the line
- 700 V SiC MOSFETs and 1200 V SiC Diodes
- 140 kHz PWM switching frequency
- dsPIC® DSC 3-level modulation digital control
- < 5% current THD at half and full loads
- IEEE Publication
 - S. Chen, W. Yu, D. Meyer, "Design and Implementation of Forced Air-cooled, 140kHz, 20kW SiC MOSFET based Vienna PFC"
- Video Overview
 - "APEC 2019: Here's How to Build an EV Charger with SiC Transistors" (https://www.youtube.com/watch?v=pBTqJI-4pKA)

Microchip Quality, Supply and Support (QSS)


- Quality: Proven reliability and ruggedness
 - Refer to earlier slides
- Supply: Risk averse throughout supply chain
 - Qualified and secured long-term substrate and epi supply with multiple vendors; not reliant on competitor substrate/epi material
 - Dual fab location strategy protecting supply chain from natural disasters or major yield issues
 - Microchip's well-established no EOL policy
 - Competitive lead times of less than 16 weeks in most cases
- <u>Support</u>: Standard and custom die, discrete, module and gate driver solutions for small to large customers

Key Takeaways

- Broad portfolio of SiC die, discrete, power module and gate driver solutions with component models
- Microchip Total System Solutions approach supports solution ecosystems
- Designed for ruggedness with Microchip's Quality, Supply and Support (QSS)
- SiC resources
 - www.microchip.com/sic (including SiC Brochure)
 - www.microchip.com/pfc
 - www.microchip.com/treelinktool

Product Family	Product Packages
Power Discretes	
Power Modules	
Integrated Power Solutions	
Digital Programmable Gate Drivers	

Thank You

www.microchip.com/sic

