Appier는 자사의 네트워크에서 실시한 실제 연구 분석 결과를 공유하며 인공 지능 기반 모델의 부정 인스톨(Ad fraud) 방지 능력을 입증했다.
자사는 지난 2017년 5월부터 8월까지, 4개월 간 광고 클릭 및 앱 설치 정보 등 40억개 이상의 캠페인 데이터 포인트를 활용하여 연구를 진행했다. 이 연구를 통해 인공 지능을 기반으로 하는 모형이 기존 규칙 기반 모형에 비해 두 배 가량 빠른 속도로 부정 인스톨 패턴을 분석하는 것으로 나타났다.
인공 지능 기반 모형의 장점은 기존 모형이 감지하기 어려운 부정 인스톨 패턴을 찾아 낼 수 있다는 것이다. 예를 들어, Appier가 발견한 하나의 사기 패턴은 “카멜레온”인데, 이는 처음에 합법적인 광고물 퍼블리셔로 위장한 뒤 추후 부정 인스톨을 발생시키는 게시자를 의미한다. 또 다른 사기 패턴은 “재고 버스트”이다. 이 패턴을 통해 인스톨 광고주의 애플리케이션 상에서 적절한 수준의 인앱 활동이 이루어지지 않을 경우, 비정상적으로 높은 재고량을 집계하게 된다.
Provides data inspection and self-learning capabilities in over 80 dimensions
Appier shared real-world research analysis results from its network, demonstrating the AI-based model’s ability to prevent ad fraud.
The company conducted research using more than 4 billion campaign data points, including ad clicks and app install information, over a four-month period from May to August 2017. The study found that models based on artificial intelligence were able to analyze fraudulent install patterns twice as fast as existing rule-based models.
The advantage of AI-based models is that they can detect fraudulent install patterns that are difficult for traditional models to detect. For example, one fraud pattern that Appier discovered is called “chameleon,” which refers to a publisher who initially disguises themselves as a legitimate ad publisher but later generates fraudulent installs. Another fraud pattern is called “inventory burst,” which involves counting abnormally high inventory when there is not a proper level of in-app activity on the install advertiser’s application.
“Fraud has become a major threat to the online advertising industry, and is expected to cost advertisers billions of dollars in the coming years,” said Joe Su, Appier’s chief technology officer. “Traditional rules-based methods for detecting fraud and mitigating its impact have limitations. Appier believes that AI-based models are far more effective, and in fact, we can see the benefits of the AI approach being evident after just four months of analyzing the network,” he added.
Existing rule-based models typically only look at one to three dimensions and operate on already known negative install patterns according to rules programmed by humans. On the other hand, AI-based models not only examine data in over 80 dimensions, but also provide self-learning capabilities, allowing them to detect new suspicious patterns that were not seen before.
The CTO added, “Just like cyber fraud or financial fraud, fraudulent installs are becoming more sophisticated and constantly evolving, so it is important to quickly identify new threats and minimize their impact. Traditional rule-based approaches cannot keep up with the fraudsters’ modus operandi, and AI-based models are needed to effectively track evolving fraudulent install patterns.”